ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgsuct GIF version

Theorem frecuzrdgsuct 10165
Description: Successor value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 29-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c (𝜑𝐶 ∈ ℤ)
frecuzrdgrclt.a (𝜑𝐴𝑆)
frecuzrdgrclt.t (𝜑𝑆𝑇)
frecuzrdgrclt.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrclt.r 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgsuct.ran (𝜑𝑃 = ran 𝑅)
Assertion
Ref Expression
frecuzrdgsuct ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃𝐵)))
Distinct variable groups:   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑃(𝑥,𝑦)

Proof of Theorem frecuzrdgsuct
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . 2 (𝜑𝐶 ∈ ℤ)
2 frecuzrdgrclt.a . 2 (𝜑𝐴𝑆)
3 frecuzrdgrclt.t . 2 (𝜑𝑆𝑇)
4 frecuzrdgrclt.f . 2 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
5 frecuzrdgrclt.r . 2 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
6 oveq1 5749 . . . 4 (𝑧 = 𝑥 → (𝑧 + 1) = (𝑥 + 1))
76cbvmptv 3994 . . 3 (𝑧 ∈ ℤ ↦ (𝑧 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1))
8 freceq1 6257 . . 3 ((𝑧 ∈ ℤ ↦ (𝑧 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1)) → frec((𝑧 ∈ ℤ ↦ (𝑧 + 1)), 𝐶) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶))
97, 8ax-mp 5 . 2 frec((𝑧 ∈ ℤ ↦ (𝑧 + 1)), 𝐶) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
10 frecuzrdgsuct.ran . 2 (𝜑𝑃 = ran 𝑅)
111, 2, 3, 4, 5, 9, 10frecuzrdgsuctlem 10164 1 ((𝜑𝐵 ∈ (ℤ𝐶)) → (𝑃‘(𝐵 + 1)) = (𝐵𝐹(𝑃𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1316  wcel 1465  wss 3041  cop 3500  cmpt 3959  ran crn 4510  cfv 5093  (class class class)co 5742  cmpo 5744  freccfrec 6255  1c1 7589   + caddc 7591  cz 9022  cuz 9294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023  df-uz 9295
This theorem is referenced by:  seq3p1  10203  seqp1cd  10207
  Copyright terms: Public domain W3C validator