ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgtcl GIF version

Theorem frecuzrdgtcl 9546
Description: The recursive definition generator on upper integers is a function. See comment in frec2uz0d 9533 for the description of 𝐺 as the mapping from ω to (ℤ𝐶). (Contributed by Jim Kingdon, 26-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frecuzrdgrrn.a (𝜑𝐴𝑆)
frecuzrdgrrn.f ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
frecuzrdgrrn.2 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
frecuzrdgtcl.3 (𝜑𝑇 = ran 𝑅)
Assertion
Ref Expression
frecuzrdgtcl (𝜑𝑇:(ℤ𝐶)⟶𝑆)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶,𝑦   𝑦,𝐺   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem frecuzrdgtcl
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecuzrdgtcl.3 . . . . . . . . . 10 (𝜑𝑇 = ran 𝑅)
21eleq2d 2152 . . . . . . . . 9 (𝜑 → (𝑧𝑇𝑧 ∈ ran 𝑅))
3 frec2uz.1 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℤ)
4 frec2uz.2 . . . . . . . . . . 11 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
5 frecuzrdgrrn.a . . . . . . . . . . 11 (𝜑𝐴𝑆)
6 frecuzrdgrrn.f . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
7 frecuzrdgrrn.2 . . . . . . . . . . 11 𝑅 = frec((𝑥 ∈ (ℤ𝐶), 𝑦𝑆 ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩)
83, 4, 5, 6, 7frecuzrdgrcl 9544 . . . . . . . . . 10 (𝜑𝑅:ω⟶((ℤ𝐶) × 𝑆))
9 ffn 5097 . . . . . . . . . 10 (𝑅:ω⟶((ℤ𝐶) × 𝑆) → 𝑅 Fn ω)
10 fvelrnb 5273 . . . . . . . . . 10 (𝑅 Fn ω → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
118, 9, 103syl 17 . . . . . . . . 9 (𝜑 → (𝑧 ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
122, 11bitrd 186 . . . . . . . 8 (𝜑 → (𝑧𝑇 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = 𝑧))
133, 4, 5, 6, 7frecuzrdgrrn 9542 . . . . . . . . . 10 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) ∈ ((ℤ𝐶) × 𝑆))
14 eleq1 2145 . . . . . . . . . 10 ((𝑅𝑤) = 𝑧 → ((𝑅𝑤) ∈ ((ℤ𝐶) × 𝑆) ↔ 𝑧 ∈ ((ℤ𝐶) × 𝑆)))
1513, 14syl5ibcom 153 . . . . . . . . 9 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = 𝑧𝑧 ∈ ((ℤ𝐶) × 𝑆)))
1615rexlimdva 2482 . . . . . . . 8 (𝜑 → (∃𝑤 ∈ ω (𝑅𝑤) = 𝑧𝑧 ∈ ((ℤ𝐶) × 𝑆)))
1712, 16sylbid 148 . . . . . . 7 (𝜑 → (𝑧𝑇𝑧 ∈ ((ℤ𝐶) × 𝑆)))
1817ssrdv 3014 . . . . . 6 (𝜑𝑇 ⊆ ((ℤ𝐶) × 𝑆))
19 xpss 4494 . . . . . 6 ((ℤ𝐶) × 𝑆) ⊆ (V × V)
2018, 19syl6ss 3020 . . . . 5 (𝜑𝑇 ⊆ (V × V))
21 df-rel 4398 . . . . 5 (Rel 𝑇𝑇 ⊆ (V × V))
2220, 21sylibr 132 . . . 4 (𝜑 → Rel 𝑇)
233, 4frec2uzf1od 9540 . . . . . . . . . . 11 (𝜑𝐺:ω–1-1-onto→(ℤ𝐶))
24 f1ocnvdm 5472 . . . . . . . . . . 11 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
2523, 24sylan 277 . . . . . . . . . 10 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝐺𝑣) ∈ ω)
263, 4, 5, 6, 7frecuzrdgrrn 9542 . . . . . . . . . 10 ((𝜑 ∧ (𝐺𝑣) ∈ ω) → (𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆))
2725, 26syldan 276 . . . . . . . . 9 ((𝜑𝑣 ∈ (ℤ𝐶)) → (𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆))
28 xp2nd 5844 . . . . . . . . 9 ((𝑅‘(𝐺𝑣)) ∈ ((ℤ𝐶) × 𝑆) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
2927, 28syl 14 . . . . . . . 8 ((𝜑𝑣 ∈ (ℤ𝐶)) → (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆)
301eleq2d 2152 . . . . . . . . . . . 12 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ 𝑇 ↔ ⟨𝑣, 𝑧⟩ ∈ ran 𝑅))
31 fvelrnb 5273 . . . . . . . . . . . . 13 (𝑅 Fn ω → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
328, 9, 313syl 17 . . . . . . . . . . . 12 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ ran 𝑅 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
3330, 32bitrd 186 . . . . . . . . . . 11 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ 𝑇 ↔ ∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩))
343adantr 270 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝐶 ∈ ℤ)
355adantr 270 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝐴𝑆)
366adantlr 461 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑤 ∈ ω) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
37 simpr 108 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑤 ∈ ω) → 𝑤 ∈ ω)
3834, 4, 35, 36, 7, 37frec2uzrdg 9543 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑤 ∈ ω) → (𝑅𝑤) = ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩)
3938eqeq1d 2091 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ ↔ ⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩))
40 vex 2613 . . . . . . . . . . . . . . . . . . . 20 𝑣 ∈ V
41 vex 2613 . . . . . . . . . . . . . . . . . . . 20 𝑧 ∈ V
4240, 41opth2 4023 . . . . . . . . . . . . . . . . . . 19 (⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩ ↔ ((𝐺𝑤) = 𝑣 ∧ (2nd ‘(𝑅𝑤)) = 𝑧))
4342simplbi 268 . . . . . . . . . . . . . . . . . 18 (⟨(𝐺𝑤), (2nd ‘(𝑅𝑤))⟩ = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣)
4439, 43syl6bi 161 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑤) = 𝑣))
45 f1ocnvfv 5470 . . . . . . . . . . . . . . . . . 18 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4623, 45sylan 277 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ ω) → ((𝐺𝑤) = 𝑣 → (𝐺𝑣) = 𝑤))
4744, 46syld 44 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (𝐺𝑣) = 𝑤))
48 fveq2 5229 . . . . . . . . . . . . . . . . 17 ((𝐺𝑣) = 𝑤 → (𝑅‘(𝐺𝑣)) = (𝑅𝑤))
4948fveq2d 5233 . . . . . . . . . . . . . . . 16 ((𝐺𝑣) = 𝑤 → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
5047, 49syl6 33 . . . . . . . . . . . . . . 15 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤))))
5150imp 122 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅‘(𝐺𝑣))) = (2nd ‘(𝑅𝑤)))
5240, 41op2ndd 5827 . . . . . . . . . . . . . . 15 ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → (2nd ‘(𝑅𝑤)) = 𝑧)
5352adantl 271 . . . . . . . . . . . . . 14 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → (2nd ‘(𝑅𝑤)) = 𝑧)
5451, 53eqtr2d 2116 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ ω) ∧ (𝑅𝑤) = ⟨𝑣, 𝑧⟩) → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))
5554ex 113 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ ω) → ((𝑅𝑤) = ⟨𝑣, 𝑧⟩ → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5655rexlimdva 2482 . . . . . . . . . . 11 (𝜑 → (∃𝑤 ∈ ω (𝑅𝑤) = ⟨𝑣, 𝑧⟩ → 𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5733, 56sylbid 148 . . . . . . . . . 10 (𝜑 → (⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5857alrimiv 1797 . . . . . . . . 9 (𝜑 → ∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
5958adantr 270 . . . . . . . 8 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
60 eqeq2 2092 . . . . . . . . . . 11 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (𝑧 = 𝑤𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))))
6160imbi2d 228 . . . . . . . . . 10 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → ((⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤) ↔ (⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
6261albidv 1747 . . . . . . . . 9 (𝑤 = (2nd ‘(𝑅‘(𝐺𝑣))) → (∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤) ↔ ∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣))))))
6362spcegv 2695 . . . . . . . 8 ((2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆 → (∀𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = (2nd ‘(𝑅‘(𝐺𝑣)))) → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤)))
6429, 59, 63sylc 61 . . . . . . 7 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤))
65 nfv 1462 . . . . . . . 8 𝑤𝑣, 𝑧⟩ ∈ 𝑇
6665mo2r 1995 . . . . . . 7 (∃𝑤𝑧(⟨𝑣, 𝑧⟩ ∈ 𝑇𝑧 = 𝑤) → ∃*𝑧𝑣, 𝑧⟩ ∈ 𝑇)
6764, 66syl 14 . . . . . 6 ((𝜑𝑣 ∈ (ℤ𝐶)) → ∃*𝑧𝑣, 𝑧⟩ ∈ 𝑇)
68 dmss 4582 . . . . . . . . . . 11 (𝑇 ⊆ ((ℤ𝐶) × 𝑆) → dom 𝑇 ⊆ dom ((ℤ𝐶) × 𝑆))
6918, 68syl 14 . . . . . . . . . 10 (𝜑 → dom 𝑇 ⊆ dom ((ℤ𝐶) × 𝑆))
70 dmxpss 4803 . . . . . . . . . 10 dom ((ℤ𝐶) × 𝑆) ⊆ (ℤ𝐶)
7169, 70syl6ss 3020 . . . . . . . . 9 (𝜑 → dom 𝑇 ⊆ (ℤ𝐶))
723adantr 270 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝐶 ∈ ℤ)
735adantr 270 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝐴𝑆)
746adantlr 461 . . . . . . . . . . . . . 14 (((𝜑𝑣 ∈ (ℤ𝐶)) ∧ (𝑥 ∈ (ℤ𝐶) ∧ 𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
75 simpr 108 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝑣 ∈ (ℤ𝐶))
7672, 4, 73, 74, 7, 75frecuzrdglem 9545 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (ℤ𝐶)) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅)
771eleq2d 2152 . . . . . . . . . . . . . 14 (𝜑 → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇 ↔ ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅))
7877adantr 270 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (ℤ𝐶)) → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇 ↔ ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ ran 𝑅))
7976, 78mpbird 165 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (ℤ𝐶)) → ⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇)
80 opeldmg 4588 . . . . . . . . . . . . 13 ((𝑣 ∈ V ∧ (2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆) → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇𝑣 ∈ dom 𝑇))
8140, 80mpan 415 . . . . . . . . . . . 12 ((2nd ‘(𝑅‘(𝐺𝑣))) ∈ 𝑆 → (⟨𝑣, (2nd ‘(𝑅‘(𝐺𝑣)))⟩ ∈ 𝑇𝑣 ∈ dom 𝑇))
8229, 79, 81sylc 61 . . . . . . . . . . 11 ((𝜑𝑣 ∈ (ℤ𝐶)) → 𝑣 ∈ dom 𝑇)
8382ex 113 . . . . . . . . . 10 (𝜑 → (𝑣 ∈ (ℤ𝐶) → 𝑣 ∈ dom 𝑇))
8483ssrdv 3014 . . . . . . . . 9 (𝜑 → (ℤ𝐶) ⊆ dom 𝑇)
8571, 84eqssd 3025 . . . . . . . 8 (𝜑 → dom 𝑇 = (ℤ𝐶))
8685eleq2d 2152 . . . . . . 7 (𝜑 → (𝑣 ∈ dom 𝑇𝑣 ∈ (ℤ𝐶)))
8786pm5.32i 442 . . . . . 6 ((𝜑𝑣 ∈ dom 𝑇) ↔ (𝜑𝑣 ∈ (ℤ𝐶)))
88 df-br 3806 . . . . . . 7 (𝑣𝑇𝑧 ↔ ⟨𝑣, 𝑧⟩ ∈ 𝑇)
8988mobii 1980 . . . . . 6 (∃*𝑧 𝑣𝑇𝑧 ↔ ∃*𝑧𝑣, 𝑧⟩ ∈ 𝑇)
9067, 87, 893imtr4i 199 . . . . 5 ((𝜑𝑣 ∈ dom 𝑇) → ∃*𝑧 𝑣𝑇𝑧)
9190ralrimiva 2439 . . . 4 (𝜑 → ∀𝑣 ∈ dom 𝑇∃*𝑧 𝑣𝑇𝑧)
92 dffun7 4978 . . . 4 (Fun 𝑇 ↔ (Rel 𝑇 ∧ ∀𝑣 ∈ dom 𝑇∃*𝑧 𝑣𝑇𝑧))
9322, 91, 92sylanbrc 408 . . 3 (𝜑 → Fun 𝑇)
94 df-fn 4955 . . 3 (𝑇 Fn (ℤ𝐶) ↔ (Fun 𝑇 ∧ dom 𝑇 = (ℤ𝐶)))
9593, 85, 94sylanbrc 408 . 2 (𝜑𝑇 Fn (ℤ𝐶))
96 rnss 4612 . . . 4 (𝑇 ⊆ ((ℤ𝐶) × 𝑆) → ran 𝑇 ⊆ ran ((ℤ𝐶) × 𝑆))
9718, 96syl 14 . . 3 (𝜑 → ran 𝑇 ⊆ ran ((ℤ𝐶) × 𝑆))
98 rnxpss 4804 . . 3 ran ((ℤ𝐶) × 𝑆) ⊆ 𝑆
9997, 98syl6ss 3020 . 2 (𝜑 → ran 𝑇𝑆)
100 df-f 4956 . 2 (𝑇:(ℤ𝐶)⟶𝑆 ↔ (𝑇 Fn (ℤ𝐶) ∧ ran 𝑇𝑆))
10195, 99, 100sylanbrc 408 1 (𝜑𝑇:(ℤ𝐶)⟶𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1283   = wceq 1285  wex 1422  wcel 1434  ∃*wmo 1944  wral 2353  wrex 2354  Vcvv 2610  wss 2982  cop 3419   class class class wbr 3805  cmpt 3859  ωcom 4359   × cxp 4389  ccnv 4390  dom cdm 4391  ran crn 4392  Rel wrel 4396  Fun wfun 4946   Fn wfn 4947  wf 4948  1-1-ontowf1o 4951  cfv 4952  (class class class)co 5563  cmpt2 5565  2nd c2nd 5817  freccfrec 6059  1c1 7096   + caddc 7098  cz 8484  cuz 8752
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-addcom 7190  ax-addass 7192  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-0id 7198  ax-rnegex 7199  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-ltadd 7206
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-frec 6060  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-inn 8159  df-n0 8408  df-z 8485  df-uz 8753
This theorem is referenced by:  frecuzrdg0  9547  frecuzrdgsuc  9548  iseqfcl  9587  iseqcl  9589
  Copyright terms: Public domain W3C validator