ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frirrg GIF version

Theorem frirrg 4114
Description: A well-founded relation is irreflexive. This is the case where 𝐴 exists. (Contributed by Jim Kingdon, 21-Sep-2021.)
Assertion
Ref Expression
frirrg ((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) → ¬ 𝐵𝑅𝐵)

Proof of Theorem frirrg
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 107 . . . 4 (((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐴 ⊆ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵}))
2 simpl3 920 . . . 4 (((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐴 ⊆ (𝐴 ∖ {𝐵})) → 𝐵𝐴)
31, 2sseldd 2973 . . 3 (((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐴 ⊆ (𝐴 ∖ {𝐵})) → 𝐵 ∈ (𝐴 ∖ {𝐵}))
4 neldifsnd 3525 . . 3 (((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐴 ⊆ (𝐴 ∖ {𝐵})) → ¬ 𝐵 ∈ (𝐴 ∖ {𝐵}))
53, 4pm2.65da 597 . 2 ((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) → ¬ 𝐴 ⊆ (𝐴 ∖ {𝐵}))
6 simplr 490 . . . . . 6 (((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) → 𝑥𝐴)
7 simpll3 956 . . . . . . . . . 10 ((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) → 𝐵𝐴)
87ad2antrr 465 . . . . . . . . 9 ((((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝐵𝐴)
9 simplr 490 . . . . . . . . 9 ((((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})))
10 simplr 490 . . . . . . . . . . 11 ((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) → 𝐵𝑅𝐵)
1110ad2antrr 465 . . . . . . . . . 10 ((((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝐵𝑅𝐵)
12 simpr 107 . . . . . . . . . 10 ((((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
1311, 12breqtrrd 3817 . . . . . . . . 9 ((((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝐵𝑅𝑥)
14 breq1 3794 . . . . . . . . . . 11 (𝑦 = 𝐵 → (𝑦𝑅𝑥𝐵𝑅𝑥))
15 eleq1 2116 . . . . . . . . . . 11 (𝑦 = 𝐵 → (𝑦 ∈ (𝐴 ∖ {𝐵}) ↔ 𝐵 ∈ (𝐴 ∖ {𝐵})))
1614, 15imbi12d 227 . . . . . . . . . 10 (𝑦 = 𝐵 → ((𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) ↔ (𝐵𝑅𝑥𝐵 ∈ (𝐴 ∖ {𝐵}))))
1716rspcv 2669 . . . . . . . . 9 (𝐵𝐴 → (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → (𝐵𝑅𝑥𝐵 ∈ (𝐴 ∖ {𝐵}))))
188, 9, 13, 17syl3c 61 . . . . . . . 8 ((((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → 𝐵 ∈ (𝐴 ∖ {𝐵}))
19 neldifsnd 3525 . . . . . . . 8 ((((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) ∧ 𝑥 = 𝐵) → ¬ 𝐵 ∈ (𝐴 ∖ {𝐵}))
2018, 19pm2.65da 597 . . . . . . 7 (((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) → ¬ 𝑥 = 𝐵)
21 velsn 3419 . . . . . . 7 (𝑥 ∈ {𝐵} ↔ 𝑥 = 𝐵)
2220, 21sylnibr 612 . . . . . 6 (((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) → ¬ 𝑥 ∈ {𝐵})
236, 22eldifd 2955 . . . . 5 (((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) ∧ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))) → 𝑥 ∈ (𝐴 ∖ {𝐵}))
2423ex 112 . . . 4 ((((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) ∧ 𝑥𝐴) → (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})))
2524ralrimiva 2409 . . 3 (((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) → ∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})))
26 df-frind 4096 . . . . . . . 8 (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠)
27 df-frfor 4095 . . . . . . . . 9 ( FrFor 𝑅𝐴𝑠 ↔ (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠))
2827albii 1375 . . . . . . . 8 (∀𝑠 FrFor 𝑅𝐴𝑠 ↔ ∀𝑠(∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠))
2926, 28bitri 177 . . . . . . 7 (𝑅 Fr 𝐴 ↔ ∀𝑠(∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠))
3029biimpi 117 . . . . . 6 (𝑅 Fr 𝐴 → ∀𝑠(∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠))
31303ad2ant1 936 . . . . 5 ((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) → ∀𝑠(∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠))
32 difexg 3925 . . . . . . 7 (𝐴𝑉 → (𝐴 ∖ {𝐵}) ∈ V)
33 eleq2 2117 . . . . . . . . . . . . 13 (𝑠 = (𝐴 ∖ {𝐵}) → (𝑦𝑠𝑦 ∈ (𝐴 ∖ {𝐵})))
3433imbi2d 223 . . . . . . . . . . . 12 (𝑠 = (𝐴 ∖ {𝐵}) → ((𝑦𝑅𝑥𝑦𝑠) ↔ (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))))
3534ralbidv 2343 . . . . . . . . . . 11 (𝑠 = (𝐴 ∖ {𝐵}) → (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) ↔ ∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵}))))
36 eleq2 2117 . . . . . . . . . . 11 (𝑠 = (𝐴 ∖ {𝐵}) → (𝑥𝑠𝑥 ∈ (𝐴 ∖ {𝐵})))
3735, 36imbi12d 227 . . . . . . . . . 10 (𝑠 = (𝐴 ∖ {𝐵}) → ((∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) ↔ (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵}))))
3837ralbidv 2343 . . . . . . . . 9 (𝑠 = (𝐴 ∖ {𝐵}) → (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) ↔ ∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵}))))
39 sseq2 2994 . . . . . . . . 9 (𝑠 = (𝐴 ∖ {𝐵}) → (𝐴𝑠𝐴 ⊆ (𝐴 ∖ {𝐵})))
4038, 39imbi12d 227 . . . . . . . 8 (𝑠 = (𝐴 ∖ {𝐵}) → ((∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠) ↔ (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵}))))
4140spcgv 2657 . . . . . . 7 ((𝐴 ∖ {𝐵}) ∈ V → (∀𝑠(∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠) → (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵}))))
4232, 41syl 14 . . . . . 6 (𝐴𝑉 → (∀𝑠(∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠) → (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵}))))
43423ad2ant2 937 . . . . 5 ((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) → (∀𝑠(∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠) → (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵}))))
4431, 43mpd 13 . . . 4 ((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) → (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵})))
4544adantr 265 . . 3 (((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) → (∀𝑥𝐴 (∀𝑦𝐴 (𝑦𝑅𝑥𝑦 ∈ (𝐴 ∖ {𝐵})) → 𝑥 ∈ (𝐴 ∖ {𝐵})) → 𝐴 ⊆ (𝐴 ∖ {𝐵})))
4625, 45mpd 13 . 2 (((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) ∧ 𝐵𝑅𝐵) → 𝐴 ⊆ (𝐴 ∖ {𝐵}))
475, 46mtand 601 1 ((𝑅 Fr 𝐴𝐴𝑉𝐵𝐴) → ¬ 𝐵𝑅𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  w3a 896  wal 1257   = wceq 1259  wcel 1409  wral 2323  Vcvv 2574  cdif 2941  wss 2944  {csn 3402   class class class wbr 3791   FrFor wfrfor 4091   Fr wfr 4092
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-v 2576  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-sn 3408  df-pr 3409  df-op 3411  df-br 3792  df-frfor 4095  df-frind 4096
This theorem is referenced by:  efrirr  4117  wepo  4123  wetriext  4328
  Copyright terms: Public domain W3C validator