Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fseq1m1p1 GIF version

Theorem fseq1m1p1 9188
 Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.)
Hypothesis
Ref Expression
fseq1m1p1.1 𝐻 = {⟨𝑁, 𝐵⟩}
Assertion
Ref Expression
fseq1m1p1 (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺𝑁) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))

Proof of Theorem fseq1m1p1
StepHypRef Expression
1 nnm1nn0 8396 . . 3 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
2 eqid 2082 . . . 4 {⟨((𝑁 − 1) + 1), 𝐵⟩} = {⟨((𝑁 − 1) + 1), 𝐵⟩}
32fseq1p1m1 9187 . . 3 ((𝑁 − 1) ∈ ℕ0 → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩})) ↔ (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))
41, 3syl 14 . 2 (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩})) ↔ (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))
5 nncn 8114 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
6 ax-1cn 7131 . . . . . . . . 9 1 ∈ ℂ
7 npcan 7384 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
85, 6, 7sylancl 404 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
98opeq1d 3584 . . . . . . 7 (𝑁 ∈ ℕ → ⟨((𝑁 − 1) + 1), 𝐵⟩ = ⟨𝑁, 𝐵⟩)
109sneqd 3419 . . . . . 6 (𝑁 ∈ ℕ → {⟨((𝑁 − 1) + 1), 𝐵⟩} = {⟨𝑁, 𝐵⟩})
11 fseq1m1p1.1 . . . . . 6 𝐻 = {⟨𝑁, 𝐵⟩}
1210, 11syl6eqr 2132 . . . . 5 (𝑁 ∈ ℕ → {⟨((𝑁 − 1) + 1), 𝐵⟩} = 𝐻)
1312uneq2d 3127 . . . 4 (𝑁 ∈ ℕ → (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩}) = (𝐹𝐻))
1413eqeq2d 2093 . . 3 (𝑁 ∈ ℕ → (𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩}) ↔ 𝐺 = (𝐹𝐻)))
15143anbi3d 1250 . 2 (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹 ∪ {⟨((𝑁 − 1) + 1), 𝐵⟩})) ↔ (𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))))
168oveq2d 5559 . . . 4 (𝑁 ∈ ℕ → (1...((𝑁 − 1) + 1)) = (1...𝑁))
1716feq2d 5066 . . 3 (𝑁 ∈ ℕ → (𝐺:(1...((𝑁 − 1) + 1))⟶𝐴𝐺:(1...𝑁)⟶𝐴))
188fveq2d 5213 . . . 4 (𝑁 ∈ ℕ → (𝐺‘((𝑁 − 1) + 1)) = (𝐺𝑁))
1918eqeq1d 2090 . . 3 (𝑁 ∈ ℕ → ((𝐺‘((𝑁 − 1) + 1)) = 𝐵 ↔ (𝐺𝑁) = 𝐵))
2017, 193anbi12d 1245 . 2 (𝑁 ∈ ℕ → ((𝐺:(1...((𝑁 − 1) + 1))⟶𝐴 ∧ (𝐺‘((𝑁 − 1) + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1)))) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺𝑁) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))
214, 15, 203bitr3d 216 1 (𝑁 ∈ ℕ → ((𝐹:(1...(𝑁 − 1))⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...𝑁)⟶𝐴 ∧ (𝐺𝑁) = 𝐵𝐹 = (𝐺 ↾ (1...(𝑁 − 1))))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 103   ∧ w3a 920   = wceq 1285   ∈ wcel 1434   ∪ cun 2972  {csn 3406  ⟨cop 3409   ↾ cres 4373  ⟶wf 4928  ‘cfv 4932  (class class class)co 5543  ℂcc 7041  1c1 7044   + caddc 7046   − cmin 7346  ℕcn 8106  ℕ0cn0 8355  ...cfz 9105 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-addcom 7138  ax-addass 7140  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-0id 7146  ax-rnegex 7147  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154 This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-inn 8107  df-n0 8356  df-z 8433  df-uz 8701  df-fz 9106 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator