Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeqi GIF version

Theorem funeqi 4950
 Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
funeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
funeqi (Fun 𝐴 ↔ Fun 𝐵)

Proof of Theorem funeqi
StepHypRef Expression
1 funeqi.1 . 2 𝐴 = 𝐵
2 funeq 4949 . 2 (𝐴 = 𝐵 → (Fun 𝐴 ↔ Fun 𝐵))
31, 2ax-mp 7 1 (Fun 𝐴 ↔ Fun 𝐵)
 Colors of variables: wff set class Syntax hints:   ↔ wb 102   = wceq 1259  Fun wfun 4924 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-in 2952  df-ss 2959  df-br 3793  df-opab 3847  df-rel 4380  df-cnv 4381  df-co 4382  df-fun 4932 This theorem is referenced by:  funmpt  4966  funmpt2  4967  funprg  4977  funtpg  4978  funtp  4980  funcnvuni  4996  f1cnvcnv  5128  f1co  5129  fun11iun  5175  f10  5188  funoprabg  5628  mpt2fun  5631  ovidig  5646  tposfun  5906  rdgfun  5991  th3qcor  6241  ssdomg  6289
 Copyright terms: Public domain W3C validator