ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funeu GIF version

Theorem funeu 4956
Description: There is exactly one value of a function. (Contributed by NM, 22-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
funeu ((Fun 𝐹𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem funeu
StepHypRef Expression
1 funrel 4949 . . . 4 (Fun 𝐹 → Rel 𝐹)
2 releldm 4597 . . . 4 ((Rel 𝐹𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹)
31, 2sylan 277 . . 3 ((Fun 𝐹𝐴𝐹𝐵) → 𝐴 ∈ dom 𝐹)
4 eldmg 4558 . . . 4 (𝐴 ∈ dom 𝐹 → (𝐴 ∈ dom 𝐹 ↔ ∃𝑦 𝐴𝐹𝑦))
54ibi 174 . . 3 (𝐴 ∈ dom 𝐹 → ∃𝑦 𝐴𝐹𝑦)
63, 5syl 14 . 2 ((Fun 𝐹𝐴𝐹𝐵) → ∃𝑦 𝐴𝐹𝑦)
7 funmo 4947 . . . 4 (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)
87adantr 270 . . 3 ((Fun 𝐹𝐴𝐹𝐵) → ∃*𝑦 𝐴𝐹𝑦)
9 df-mo 1946 . . 3 (∃*𝑦 𝐴𝐹𝑦 ↔ (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦))
108, 9sylib 120 . 2 ((Fun 𝐹𝐴𝐹𝐵) → (∃𝑦 𝐴𝐹𝑦 → ∃!𝑦 𝐴𝐹𝑦))
116, 10mpd 13 1 ((Fun 𝐹𝐴𝐹𝐵) → ∃!𝑦 𝐴𝐹𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wex 1422  wcel 1434  ∃!weu 1942  ∃*wmo 1943   class class class wbr 3793  dom cdm 4371  Rel wrel 4376  Fun wfun 4926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-fun 4934
This theorem is referenced by:  funeu2  4957  funbrfv  5244
  Copyright terms: Public domain W3C validator