ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvima3 GIF version

Theorem funfvima3 5644
Description: A class including a function contains the function's value in the image of the singleton of the argument. (Contributed by NM, 23-Mar-2004.)
Assertion
Ref Expression
funfvima3 ((Fun 𝐹𝐹𝐺) → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ (𝐺 “ {𝐴})))

Proof of Theorem funfvima3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funfvop 5525 . . . . . 6 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
2 ssel 3086 . . . . . 6 (𝐹𝐺 → (⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹 → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
31, 2syl5 32 . . . . 5 (𝐹𝐺 → ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
43imp 123 . . . 4 ((𝐹𝐺 ∧ (Fun 𝐹𝐴 ∈ dom 𝐹)) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺)
5 simpr 109 . . . . . 6 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐴 ∈ dom 𝐹)
6 sneq 3533 . . . . . . . . . 10 (𝑥 = 𝐴 → {𝑥} = {𝐴})
76imaeq2d 4876 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐺 “ {𝑥}) = (𝐺 “ {𝐴}))
87eleq2d 2207 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ (𝐹𝐴) ∈ (𝐺 “ {𝐴})))
9 opeq1 3700 . . . . . . . . 9 (𝑥 = 𝐴 → ⟨𝑥, (𝐹𝐴)⟩ = ⟨𝐴, (𝐹𝐴)⟩)
109eleq1d 2206 . . . . . . . 8 (𝑥 = 𝐴 → (⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
118, 10bibi12d 234 . . . . . . 7 (𝑥 = 𝐴 → (((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ ⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺) ↔ ((𝐹𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺)))
1211adantl 275 . . . . . 6 (((Fun 𝐹𝐴 ∈ dom 𝐹) ∧ 𝑥 = 𝐴) → (((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ ⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺) ↔ ((𝐹𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺)))
13 vex 2684 . . . . . . 7 𝑥 ∈ V
14 funfvex 5431 . . . . . . 7 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ V)
15 elimasng 4902 . . . . . . 7 ((𝑥 ∈ V ∧ (𝐹𝐴) ∈ V) → ((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ ⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺))
1613, 14, 15sylancr 410 . . . . . 6 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ ⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺))
175, 12, 16vtocld 2733 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
1817adantl 275 . . . 4 ((𝐹𝐺 ∧ (Fun 𝐹𝐴 ∈ dom 𝐹)) → ((𝐹𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
194, 18mpbird 166 . . 3 ((𝐹𝐺 ∧ (Fun 𝐹𝐴 ∈ dom 𝐹)) → (𝐹𝐴) ∈ (𝐺 “ {𝐴}))
2019exp32 362 . 2 (𝐹𝐺 → (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ (𝐺 “ {𝐴}))))
2120impcom 124 1 ((Fun 𝐹𝐹𝐺) → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ (𝐺 “ {𝐴})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  Vcvv 2681  wss 3066  {csn 3522  cop 3525  dom cdm 4534  cima 4537  Fun wfun 5112  cfv 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-fv 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator