ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass1 GIF version

Theorem funimass1 5004
Description: A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimass1 ((Fun 𝐹𝐴 ⊆ ran 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))

Proof of Theorem funimass1
StepHypRef Expression
1 imass2 4729 . 2 ((𝐹𝐴) ⊆ 𝐵 → (𝐹 “ (𝐹𝐴)) ⊆ (𝐹𝐵))
2 funimacnv 5003 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = (𝐴 ∩ ran 𝐹))
3 dfss 2960 . . . . . 6 (𝐴 ⊆ ran 𝐹𝐴 = (𝐴 ∩ ran 𝐹))
43biimpi 117 . . . . 5 (𝐴 ⊆ ran 𝐹𝐴 = (𝐴 ∩ ran 𝐹))
54eqcomd 2061 . . . 4 (𝐴 ⊆ ran 𝐹 → (𝐴 ∩ ran 𝐹) = 𝐴)
62, 5sylan9eq 2108 . . 3 ((Fun 𝐹𝐴 ⊆ ran 𝐹) → (𝐹 “ (𝐹𝐴)) = 𝐴)
76sseq1d 3000 . 2 ((Fun 𝐹𝐴 ⊆ ran 𝐹) → ((𝐹 “ (𝐹𝐴)) ⊆ (𝐹𝐵) ↔ 𝐴 ⊆ (𝐹𝐵)))
81, 7syl5ib 147 1 ((Fun 𝐹𝐴 ⊆ ran 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  cin 2944  wss 2945  ccnv 4372  ran crn 4374  cima 4376  Fun wfun 4924
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-fun 4932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator