ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funiunfvdm GIF version

Theorem funiunfvdm 5434
Description: The indexed union of a function's values is the union of its image under the index class. This theorem is a slight variation of fniunfv 5433. (Contributed by Jim Kingdon, 10-Jan-2019.)
Assertion
Ref Expression
funiunfvdm (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem funiunfvdm
StepHypRef Expression
1 fniunfv 5433 . 2 (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = ran 𝐹)
2 imadmrn 4708 . . . 4 (𝐹 “ dom 𝐹) = ran 𝐹
3 fndm 5029 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
43imaeq2d 4698 . . . 4 (𝐹 Fn 𝐴 → (𝐹 “ dom 𝐹) = (𝐹𝐴))
52, 4syl5eqr 2128 . . 3 (𝐹 Fn 𝐴 → ran 𝐹 = (𝐹𝐴))
65unieqd 3620 . 2 (𝐹 Fn 𝐴 ran 𝐹 = (𝐹𝐴))
71, 6eqtrd 2114 1 (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1285   cuni 3609   ciun 3686  dom cdm 4371  ran crn 4372  cima 4374   Fn wfn 4927  cfv 4932
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-sbc 2817  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-fv 4940
This theorem is referenced by:  funiunfvdmf  5435  eluniimadm  5436
  Copyright terms: Public domain W3C validator