ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funiunfvdmf GIF version

Theorem funiunfvdmf 5390
Description: The indexed union of a function's values is the union of its image under the index class. This version of funiunfvdm 5389 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by Jim Kingdon, 10-Jan-2019.)
Hypothesis
Ref Expression
funiunfvf.1 𝑥𝐹
Assertion
Ref Expression
funiunfvdmf (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem funiunfvdmf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 funiunfvf.1 . . . 4 𝑥𝐹
2 nfcv 2178 . . . 4 𝑥𝑧
31, 2nffv 5172 . . 3 𝑥(𝐹𝑧)
4 nfcv 2178 . . 3 𝑧(𝐹𝑥)
5 fveq2 5165 . . 3 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
63, 4, 5cbviun 3691 . 2 𝑧𝐴 (𝐹𝑧) = 𝑥𝐴 (𝐹𝑥)
7 funiunfvdm 5389 . 2 (𝐹 Fn 𝐴 𝑧𝐴 (𝐹𝑧) = (𝐹𝐴))
86, 7syl5eqr 2086 1 (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1243  wnfc 2165   cuni 3577   ciun 3654  cima 4335   Fn wfn 4884  cfv 4889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3872  ax-pow 3924  ax-pr 3941
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2308  df-rex 2309  df-v 2556  df-sbc 2762  df-un 2919  df-in 2921  df-ss 2928  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3578  df-iun 3656  df-br 3762  df-opab 3816  df-mpt 3817  df-id 4027  df-xp 4338  df-rel 4339  df-cnv 4340  df-co 4341  df-dm 4342  df-rn 4343  df-res 4344  df-ima 4345  df-iota 4854  df-fun 4891  df-fn 4892  df-fv 4897
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator