Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  funiunfvdmf GIF version

Theorem funiunfvdmf 5346
 Description: The indexed union of a function's values is the union of its image under the index class. This version of funiunfvdm 5345 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by Jim Kingdon, 10-Jan-2019.)
Hypothesis
Ref Expression
funiunfvf.1 x𝐹
Assertion
Ref Expression
funiunfvdmf (𝐹 Fn A x A (𝐹x) = (𝐹A))
Distinct variable group:   x,A
Allowed substitution hint:   𝐹(x)

Proof of Theorem funiunfvdmf
Dummy variable z is distinct from all other variables.
StepHypRef Expression
1 funiunfvf.1 . . . 4 x𝐹
2 nfcv 2175 . . . 4 xz
31, 2nffv 5128 . . 3 x(𝐹z)
4 nfcv 2175 . . 3 z(𝐹x)
5 fveq2 5121 . . 3 (z = x → (𝐹z) = (𝐹x))
63, 4, 5cbviun 3685 . 2 z A (𝐹z) = x A (𝐹x)
7 funiunfvdm 5345 . 2 (𝐹 Fn A z A (𝐹z) = (𝐹A))
86, 7syl5eqr 2083 1 (𝐹 Fn A x A (𝐹x) = (𝐹A))
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1242  Ⅎwnfc 2162  ∪ cuni 3571  ∪ ciun 3648   “ cima 4291   Fn wfn 4840  ‘cfv 4845 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935 This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-sbc 2759  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-iun 3650  df-br 3756  df-opab 3810  df-mpt 3811  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-iota 4810  df-fun 4847  df-fn 4848  df-fv 4853 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator