![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funopab4 | GIF version |
Description: A class of ordered pairs of values in the form used by df-mpt 3861 is a function. (Contributed by NM, 17-Feb-2013.) |
Ref | Expression |
---|---|
funopab4 | ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 108 | . . 3 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) | |
2 | 1 | ssopab2i 4060 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} |
3 | funopabeq 4986 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} | |
4 | funss 4970 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} → (Fun {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐴} → Fun {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)})) | |
5 | 2, 3, 4 | mp2 16 | 1 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐴)} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1285 ⊆ wss 2982 {copab 3858 Fun wfun 4946 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2612 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-br 3806 df-opab 3860 df-id 4076 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-fun 4954 |
This theorem is referenced by: funmpt 4988 |
Copyright terms: Public domain | W3C validator |