![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funpr | GIF version |
Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) |
Ref | Expression |
---|---|
funpr.1 | ⊢ 𝐴 ∈ V |
funpr.2 | ⊢ 𝐵 ∈ V |
funpr.3 | ⊢ 𝐶 ∈ V |
funpr.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
funpr | ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funpr.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | funpr.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | pm3.2i 266 | . 2 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
4 | funpr.3 | . . 3 ⊢ 𝐶 ∈ V | |
5 | funpr.4 | . . 3 ⊢ 𝐷 ∈ V | |
6 | 4, 5 | pm3.2i 266 | . 2 ⊢ (𝐶 ∈ V ∧ 𝐷 ∈ V) |
7 | funprg 5001 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V) ∧ 𝐴 ≠ 𝐵) → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) | |
8 | 3, 6, 7 | mp3an12 1259 | 1 ⊢ (𝐴 ≠ 𝐵 → Fun {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1434 ≠ wne 2249 Vcvv 2610 {cpr 3418 〈cop 3420 Fun wfun 4947 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3917 ax-pow 3969 ax-pr 3993 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-rex 2359 df-v 2612 df-dif 2985 df-un 2987 df-in 2989 df-ss 2996 df-nul 3269 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-br 3807 df-opab 3861 df-id 4077 df-xp 4398 df-rel 4399 df-cnv 4400 df-co 4401 df-dm 4402 df-fun 4955 |
This theorem is referenced by: funtp 5004 fpr 5398 |
Copyright terms: Public domain | W3C validator |