ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funres11 GIF version

Theorem funres11 5002
Description: The restriction of a one-to-one function is one-to-one. (Contributed by NM, 25-Mar-1998.)
Assertion
Ref Expression
funres11 (Fun 𝐹 → Fun (𝐹𝐴))

Proof of Theorem funres11
StepHypRef Expression
1 resss 4663 . 2 (𝐹𝐴) ⊆ 𝐹
2 cnvss 4536 . 2 ((𝐹𝐴) ⊆ 𝐹(𝐹𝐴) ⊆ 𝐹)
3 funss 4950 . 2 ((𝐹𝐴) ⊆ 𝐹 → (Fun 𝐹 → Fun (𝐹𝐴)))
41, 2, 3mp2b 8 1 (Fun 𝐹 → Fun (𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wss 2974  ccnv 4370  cres 4373  Fun wfun 4926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-in 2980  df-ss 2987  df-br 3794  df-opab 3848  df-rel 4378  df-cnv 4379  df-co 4380  df-res 4383  df-fun 4934
This theorem is referenced by:  f1ssres  5130  resdif  5179  ssdomg  6325
  Copyright terms: Public domain W3C validator