![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funsn | GIF version |
Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
funsn.1 | ⊢ 𝐴 ∈ V |
funsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
funsn | ⊢ Fun {〈𝐴, 𝐵〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | funsn.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | funsng 4970 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → Fun {〈𝐴, 𝐵〉}) | |
4 | 1, 2, 3 | mp2an 417 | 1 ⊢ Fun {〈𝐴, 𝐵〉} |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1434 Vcvv 2602 {csn 3400 〈cop 3403 Fun wfun 4920 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-pow 3950 ax-pr 3966 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-br 3788 df-opab 3842 df-id 4050 df-xp 4371 df-rel 4372 df-cnv 4373 df-co 4374 df-fun 4928 |
This theorem is referenced by: funtp 4977 fun0 4982 fvsn 5384 |
Copyright terms: Public domain | W3C validator |