ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funssres GIF version

Theorem funssres 4969
Description: The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
funssres ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)

Proof of Theorem funssres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 2966 . . . . . . 7 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → ⟨𝑥, 𝑦⟩ ∈ 𝐹))
2 vex 2577 . . . . . . . . 9 𝑥 ∈ V
3 vex 2577 . . . . . . . . 9 𝑦 ∈ V
42, 3opeldm 4565 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐺𝑥 ∈ dom 𝐺)
54a1i 9 . . . . . . 7 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺𝑥 ∈ dom 𝐺))
61, 5jcad 295 . . . . . 6 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺)))
76adantl 266 . . . . 5 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺)))
8 funeu2 4954 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ∃!𝑦𝑥, 𝑦⟩ ∈ 𝐹)
92eldm2 4560 . . . . . . . . . . . . . 14 (𝑥 ∈ dom 𝐺 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐺)
101ancrd 313 . . . . . . . . . . . . . . 15 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
1110eximdv 1776 . . . . . . . . . . . . . 14 (𝐺𝐹 → (∃𝑦𝑥, 𝑦⟩ ∈ 𝐺 → ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
129, 11syl5bi 145 . . . . . . . . . . . . 13 (𝐺𝐹 → (𝑥 ∈ dom 𝐺 → ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
1312imp 119 . . . . . . . . . . . 12 ((𝐺𝐹𝑥 ∈ dom 𝐺) → ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
14 eupick 1995 . . . . . . . . . . . 12 ((∃!𝑦𝑥, 𝑦⟩ ∈ 𝐹 ∧ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))
158, 13, 14syl2an 277 . . . . . . . . . . 11 (((Fun 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ∧ (𝐺𝐹𝑥 ∈ dom 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))
1615exp43 358 . . . . . . . . . 10 (Fun 𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝐺𝐹 → (𝑥 ∈ dom 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺)))))
1716com23 76 . . . . . . . . 9 (Fun 𝐹 → (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺)))))
1817imp 119 . . . . . . . 8 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))))
1918com34 81 . . . . . . 7 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))))
2019pm2.43d 48 . . . . . 6 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
2120impd 246 . . . . 5 ((Fun 𝐹𝐺𝐹) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺) → ⟨𝑥, 𝑦⟩ ∈ 𝐺))
227, 21impbid 124 . . . 4 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺)))
233opelres 4644 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺))
2422, 23syl6rbbr 192 . . 3 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
2524alrimivv 1771 . 2 ((Fun 𝐹𝐺𝐹) → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
26 relres 4666 . . 3 Rel (𝐹 ↾ dom 𝐺)
27 funrel 4946 . . . 4 (Fun 𝐹 → Rel 𝐹)
28 relss 4454 . . . 4 (𝐺𝐹 → (Rel 𝐹 → Rel 𝐺))
2927, 28mpan9 269 . . 3 ((Fun 𝐹𝐺𝐹) → Rel 𝐺)
30 eqrel 4456 . . 3 ((Rel (𝐹 ↾ dom 𝐺) ∧ Rel 𝐺) → ((𝐹 ↾ dom 𝐺) = 𝐺 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
3126, 29, 30sylancr 399 . 2 ((Fun 𝐹𝐺𝐹) → ((𝐹 ↾ dom 𝐺) = 𝐺 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
3225, 31mpbird 160 1 ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wal 1257   = wceq 1259  wex 1397  wcel 1409  ∃!weu 1916  wss 2944  cop 3405  dom cdm 4372  cres 4374  Rel wrel 4377  Fun wfun 4923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-br 3792  df-opab 3846  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-res 4384  df-fun 4931
This theorem is referenced by:  fun2ssres  4970  funcnvres  4999  funssfv  5226  oprssov  5669
  Copyright terms: Public domain W3C validator