ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funssxp GIF version

Theorem funssxp 5087
Description: Two ways of specifying a partial function from 𝐴 to 𝐵. (Contributed by NM, 13-Nov-2007.)
Assertion
Ref Expression
funssxp ((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) ↔ (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))

Proof of Theorem funssxp
StepHypRef Expression
1 funfn 4958 . . . . . 6 (Fun 𝐹𝐹 Fn dom 𝐹)
21biimpi 117 . . . . 5 (Fun 𝐹𝐹 Fn dom 𝐹)
3 rnss 4591 . . . . . 6 (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ ran (𝐴 × 𝐵))
4 rnxpss 4781 . . . . . 6 ran (𝐴 × 𝐵) ⊆ 𝐵
53, 4syl6ss 2984 . . . . 5 (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹𝐵)
62, 5anim12i 325 . . . 4 ((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹 Fn dom 𝐹 ∧ ran 𝐹𝐵))
7 df-f 4933 . . . 4 (𝐹:dom 𝐹𝐵 ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹𝐵))
86, 7sylibr 141 . . 3 ((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) → 𝐹:dom 𝐹𝐵)
9 dmss 4561 . . . . 5 (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹 ⊆ dom (𝐴 × 𝐵))
10 dmxpss 4780 . . . . 5 dom (𝐴 × 𝐵) ⊆ 𝐴
119, 10syl6ss 2984 . . . 4 (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹𝐴)
1211adantl 266 . . 3 ((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) → dom 𝐹𝐴)
138, 12jca 294 . 2 ((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
14 ffun 5075 . . . 4 (𝐹:dom 𝐹𝐵 → Fun 𝐹)
1514adantr 265 . . 3 ((𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴) → Fun 𝐹)
16 fssxp 5085 . . . 4 (𝐹:dom 𝐹𝐵𝐹 ⊆ (dom 𝐹 × 𝐵))
17 xpss1 4475 . . . 4 (dom 𝐹𝐴 → (dom 𝐹 × 𝐵) ⊆ (𝐴 × 𝐵))
1816, 17sylan9ss 2985 . . 3 ((𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴) → 𝐹 ⊆ (𝐴 × 𝐵))
1915, 18jca 294 . 2 ((𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴) → (Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)))
2013, 19impbii 121 1 ((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) ↔ (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102  wss 2944   × cxp 4370  dom cdm 4372  ran crn 4373  Fun wfun 4923   Fn wfn 4924  wf 4925
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-br 3792  df-opab 3846  df-xp 4378  df-rel 4379  df-cnv 4380  df-dm 4382  df-rn 4383  df-fun 4931  df-fn 4932  df-f 4933
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator