ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fununi GIF version

Theorem fununi 5191
Description: The union of a chain (with respect to inclusion) of functions is a function. (Contributed by NM, 10-Aug-2004.)
Assertion
Ref Expression
fununi (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
Distinct variable group:   𝑓,𝑔,𝐴

Proof of Theorem fununi
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funrel 5140 . . . . 5 (Fun 𝑓 → Rel 𝑓)
21adantr 274 . . . 4 ((Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Rel 𝑓)
32ralimi 2495 . . 3 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → ∀𝑓𝐴 Rel 𝑓)
4 reluni 4662 . . 3 (Rel 𝐴 ↔ ∀𝑓𝐴 Rel 𝑓)
53, 4sylibr 133 . 2 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Rel 𝐴)
6 r19.28av 2568 . . . 4 ((Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → ∀𝑔𝐴 (Fun 𝑓 ∧ (𝑓𝑔𝑔𝑓)))
76ralimi 2495 . . 3 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → ∀𝑓𝐴𝑔𝐴 (Fun 𝑓 ∧ (𝑓𝑔𝑔𝑓)))
8 ssel 3091 . . . . . . . . . . . . 13 (𝑤𝑣 → (⟨𝑥, 𝑦⟩ ∈ 𝑤 → ⟨𝑥, 𝑦⟩ ∈ 𝑣))
98anim1d 334 . . . . . . . . . . . 12 (𝑤𝑣 → ((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → (⟨𝑥, 𝑦⟩ ∈ 𝑣 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣)))
10 dffun4 5134 . . . . . . . . . . . . . . 15 (Fun 𝑣 ↔ (Rel 𝑣 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝑣 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → 𝑦 = 𝑧)))
1110simprbi 273 . . . . . . . . . . . . . 14 (Fun 𝑣 → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝑣 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → 𝑦 = 𝑧))
121119.21bbi 1538 . . . . . . . . . . . . 13 (Fun 𝑣 → ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝑣 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → 𝑦 = 𝑧))
131219.21bi 1537 . . . . . . . . . . . 12 (Fun 𝑣 → ((⟨𝑥, 𝑦⟩ ∈ 𝑣 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → 𝑦 = 𝑧))
149, 13syl9r 73 . . . . . . . . . . 11 (Fun 𝑣 → (𝑤𝑣 → ((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → 𝑦 = 𝑧)))
1514adantl 275 . . . . . . . . . 10 ((Fun 𝑤 ∧ Fun 𝑣) → (𝑤𝑣 → ((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → 𝑦 = 𝑧)))
16 ssel 3091 . . . . . . . . . . . . 13 (𝑣𝑤 → (⟨𝑥, 𝑧⟩ ∈ 𝑣 → ⟨𝑥, 𝑧⟩ ∈ 𝑤))
1716anim2d 335 . . . . . . . . . . . 12 (𝑣𝑤 → ((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → (⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑤)))
18 dffun4 5134 . . . . . . . . . . . . . . 15 (Fun 𝑤 ↔ (Rel 𝑤 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑤) → 𝑦 = 𝑧)))
1918simprbi 273 . . . . . . . . . . . . . 14 (Fun 𝑤 → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑤) → 𝑦 = 𝑧))
201919.21bbi 1538 . . . . . . . . . . . . 13 (Fun 𝑤 → ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑤) → 𝑦 = 𝑧))
212019.21bi 1537 . . . . . . . . . . . 12 (Fun 𝑤 → ((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑤) → 𝑦 = 𝑧))
2217, 21syl9r 73 . . . . . . . . . . 11 (Fun 𝑤 → (𝑣𝑤 → ((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → 𝑦 = 𝑧)))
2322adantr 274 . . . . . . . . . 10 ((Fun 𝑤 ∧ Fun 𝑣) → (𝑣𝑤 → ((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → 𝑦 = 𝑧)))
2415, 23jaod 706 . . . . . . . . 9 ((Fun 𝑤 ∧ Fun 𝑣) → ((𝑤𝑣𝑣𝑤) → ((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → 𝑦 = 𝑧)))
2524imp 123 . . . . . . . 8 (((Fun 𝑤 ∧ Fun 𝑣) ∧ (𝑤𝑣𝑣𝑤)) → ((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → 𝑦 = 𝑧))
2625ralimi 2495 . . . . . . 7 (∀𝑣𝐴 ((Fun 𝑤 ∧ Fun 𝑣) ∧ (𝑤𝑣𝑣𝑤)) → ∀𝑣𝐴 ((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → 𝑦 = 𝑧))
2726ralimi 2495 . . . . . 6 (∀𝑤𝐴𝑣𝐴 ((Fun 𝑤 ∧ Fun 𝑣) ∧ (𝑤𝑣𝑣𝑤)) → ∀𝑤𝐴𝑣𝐴 ((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → 𝑦 = 𝑧))
28 funeq 5143 . . . . . . . . . 10 (𝑓 = 𝑤 → (Fun 𝑓 ↔ Fun 𝑤))
29 sseq1 3120 . . . . . . . . . . 11 (𝑓 = 𝑤 → (𝑓𝑔𝑤𝑔))
30 sseq2 3121 . . . . . . . . . . 11 (𝑓 = 𝑤 → (𝑔𝑓𝑔𝑤))
3129, 30orbi12d 782 . . . . . . . . . 10 (𝑓 = 𝑤 → ((𝑓𝑔𝑔𝑓) ↔ (𝑤𝑔𝑔𝑤)))
3228, 31anbi12d 464 . . . . . . . . 9 (𝑓 = 𝑤 → ((Fun 𝑓 ∧ (𝑓𝑔𝑔𝑓)) ↔ (Fun 𝑤 ∧ (𝑤𝑔𝑔𝑤))))
33 sseq2 3121 . . . . . . . . . . 11 (𝑔 = 𝑣 → (𝑤𝑔𝑤𝑣))
34 sseq1 3120 . . . . . . . . . . 11 (𝑔 = 𝑣 → (𝑔𝑤𝑣𝑤))
3533, 34orbi12d 782 . . . . . . . . . 10 (𝑔 = 𝑣 → ((𝑤𝑔𝑔𝑤) ↔ (𝑤𝑣𝑣𝑤)))
3635anbi2d 459 . . . . . . . . 9 (𝑔 = 𝑣 → ((Fun 𝑤 ∧ (𝑤𝑔𝑔𝑤)) ↔ (Fun 𝑤 ∧ (𝑤𝑣𝑣𝑤))))
3732, 36cbvral2v 2665 . . . . . . . 8 (∀𝑓𝐴𝑔𝐴 (Fun 𝑓 ∧ (𝑓𝑔𝑔𝑓)) ↔ ∀𝑤𝐴𝑣𝐴 (Fun 𝑤 ∧ (𝑤𝑣𝑣𝑤)))
38 ralcom 2594 . . . . . . . . 9 (∀𝑓𝐴𝑔𝐴 (Fun 𝑓 ∧ (𝑓𝑔𝑔𝑓)) ↔ ∀𝑔𝐴𝑓𝐴 (Fun 𝑓 ∧ (𝑓𝑔𝑔𝑓)))
39 orcom 717 . . . . . . . . . . . 12 ((𝑓𝑔𝑔𝑓) ↔ (𝑔𝑓𝑓𝑔))
40 sseq1 3120 . . . . . . . . . . . . 13 (𝑔 = 𝑤 → (𝑔𝑓𝑤𝑓))
41 sseq2 3121 . . . . . . . . . . . . 13 (𝑔 = 𝑤 → (𝑓𝑔𝑓𝑤))
4240, 41orbi12d 782 . . . . . . . . . . . 12 (𝑔 = 𝑤 → ((𝑔𝑓𝑓𝑔) ↔ (𝑤𝑓𝑓𝑤)))
4339, 42syl5bb 191 . . . . . . . . . . 11 (𝑔 = 𝑤 → ((𝑓𝑔𝑔𝑓) ↔ (𝑤𝑓𝑓𝑤)))
4443anbi2d 459 . . . . . . . . . 10 (𝑔 = 𝑤 → ((Fun 𝑓 ∧ (𝑓𝑔𝑔𝑓)) ↔ (Fun 𝑓 ∧ (𝑤𝑓𝑓𝑤))))
45 funeq 5143 . . . . . . . . . . 11 (𝑓 = 𝑣 → (Fun 𝑓 ↔ Fun 𝑣))
46 sseq2 3121 . . . . . . . . . . . 12 (𝑓 = 𝑣 → (𝑤𝑓𝑤𝑣))
47 sseq1 3120 . . . . . . . . . . . 12 (𝑓 = 𝑣 → (𝑓𝑤𝑣𝑤))
4846, 47orbi12d 782 . . . . . . . . . . 11 (𝑓 = 𝑣 → ((𝑤𝑓𝑓𝑤) ↔ (𝑤𝑣𝑣𝑤)))
4945, 48anbi12d 464 . . . . . . . . . 10 (𝑓 = 𝑣 → ((Fun 𝑓 ∧ (𝑤𝑓𝑓𝑤)) ↔ (Fun 𝑣 ∧ (𝑤𝑣𝑣𝑤))))
5044, 49cbvral2v 2665 . . . . . . . . 9 (∀𝑔𝐴𝑓𝐴 (Fun 𝑓 ∧ (𝑓𝑔𝑔𝑓)) ↔ ∀𝑤𝐴𝑣𝐴 (Fun 𝑣 ∧ (𝑤𝑣𝑣𝑤)))
5138, 50bitri 183 . . . . . . . 8 (∀𝑓𝐴𝑔𝐴 (Fun 𝑓 ∧ (𝑓𝑔𝑔𝑓)) ↔ ∀𝑤𝐴𝑣𝐴 (Fun 𝑣 ∧ (𝑤𝑣𝑣𝑤)))
5237, 51anbi12i 455 . . . . . . 7 ((∀𝑓𝐴𝑔𝐴 (Fun 𝑓 ∧ (𝑓𝑔𝑔𝑓)) ∧ ∀𝑓𝐴𝑔𝐴 (Fun 𝑓 ∧ (𝑓𝑔𝑔𝑓))) ↔ (∀𝑤𝐴𝑣𝐴 (Fun 𝑤 ∧ (𝑤𝑣𝑣𝑤)) ∧ ∀𝑤𝐴𝑣𝐴 (Fun 𝑣 ∧ (𝑤𝑣𝑣𝑤))))
53 anidm 393 . . . . . . 7 ((∀𝑓𝐴𝑔𝐴 (Fun 𝑓 ∧ (𝑓𝑔𝑔𝑓)) ∧ ∀𝑓𝐴𝑔𝐴 (Fun 𝑓 ∧ (𝑓𝑔𝑔𝑓))) ↔ ∀𝑓𝐴𝑔𝐴 (Fun 𝑓 ∧ (𝑓𝑔𝑔𝑓)))
54 anandir 580 . . . . . . . . 9 (((Fun 𝑤 ∧ Fun 𝑣) ∧ (𝑤𝑣𝑣𝑤)) ↔ ((Fun 𝑤 ∧ (𝑤𝑣𝑣𝑤)) ∧ (Fun 𝑣 ∧ (𝑤𝑣𝑣𝑤))))
55542ralbii 2443 . . . . . . . 8 (∀𝑤𝐴𝑣𝐴 ((Fun 𝑤 ∧ Fun 𝑣) ∧ (𝑤𝑣𝑣𝑤)) ↔ ∀𝑤𝐴𝑣𝐴 ((Fun 𝑤 ∧ (𝑤𝑣𝑣𝑤)) ∧ (Fun 𝑣 ∧ (𝑤𝑣𝑣𝑤))))
56 r19.26-2 2561 . . . . . . . 8 (∀𝑤𝐴𝑣𝐴 ((Fun 𝑤 ∧ (𝑤𝑣𝑣𝑤)) ∧ (Fun 𝑣 ∧ (𝑤𝑣𝑣𝑤))) ↔ (∀𝑤𝐴𝑣𝐴 (Fun 𝑤 ∧ (𝑤𝑣𝑣𝑤)) ∧ ∀𝑤𝐴𝑣𝐴 (Fun 𝑣 ∧ (𝑤𝑣𝑣𝑤))))
5755, 56bitr2i 184 . . . . . . 7 ((∀𝑤𝐴𝑣𝐴 (Fun 𝑤 ∧ (𝑤𝑣𝑣𝑤)) ∧ ∀𝑤𝐴𝑣𝐴 (Fun 𝑣 ∧ (𝑤𝑣𝑣𝑤))) ↔ ∀𝑤𝐴𝑣𝐴 ((Fun 𝑤 ∧ Fun 𝑣) ∧ (𝑤𝑣𝑣𝑤)))
5852, 53, 573bitr3i 209 . . . . . 6 (∀𝑓𝐴𝑔𝐴 (Fun 𝑓 ∧ (𝑓𝑔𝑔𝑓)) ↔ ∀𝑤𝐴𝑣𝐴 ((Fun 𝑤 ∧ Fun 𝑣) ∧ (𝑤𝑣𝑣𝑤)))
59 eluni 3739 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ∃𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑤𝑤𝐴))
60 eluni 3739 . . . . . . . . . 10 (⟨𝑥, 𝑧⟩ ∈ 𝐴 ↔ ∃𝑣(⟨𝑥, 𝑧⟩ ∈ 𝑣𝑣𝐴))
6159, 60anbi12i 455 . . . . . . . . 9 ((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ↔ (∃𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑤𝑤𝐴) ∧ ∃𝑣(⟨𝑥, 𝑧⟩ ∈ 𝑣𝑣𝐴)))
62 eeanv 1904 . . . . . . . . 9 (∃𝑤𝑣((⟨𝑥, 𝑦⟩ ∈ 𝑤𝑤𝐴) ∧ (⟨𝑥, 𝑧⟩ ∈ 𝑣𝑣𝐴)) ↔ (∃𝑤(⟨𝑥, 𝑦⟩ ∈ 𝑤𝑤𝐴) ∧ ∃𝑣(⟨𝑥, 𝑧⟩ ∈ 𝑣𝑣𝐴)))
63 an4 575 . . . . . . . . . . 11 (((⟨𝑥, 𝑦⟩ ∈ 𝑤𝑤𝐴) ∧ (⟨𝑥, 𝑧⟩ ∈ 𝑣𝑣𝐴)) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) ∧ (𝑤𝐴𝑣𝐴)))
64 ancom 264 . . . . . . . . . . 11 (((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) ∧ (𝑤𝐴𝑣𝐴)) ↔ ((𝑤𝐴𝑣𝐴) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣)))
6563, 64bitri 183 . . . . . . . . . 10 (((⟨𝑥, 𝑦⟩ ∈ 𝑤𝑤𝐴) ∧ (⟨𝑥, 𝑧⟩ ∈ 𝑣𝑣𝐴)) ↔ ((𝑤𝐴𝑣𝐴) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣)))
66652exbii 1585 . . . . . . . . 9 (∃𝑤𝑣((⟨𝑥, 𝑦⟩ ∈ 𝑤𝑤𝐴) ∧ (⟨𝑥, 𝑧⟩ ∈ 𝑣𝑣𝐴)) ↔ ∃𝑤𝑣((𝑤𝐴𝑣𝐴) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣)))
6761, 62, 663bitr2i 207 . . . . . . . 8 ((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) ↔ ∃𝑤𝑣((𝑤𝐴𝑣𝐴) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣)))
6867imbi1i 237 . . . . . . 7 (((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧) ↔ (∃𝑤𝑣((𝑤𝐴𝑣𝐴) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣)) → 𝑦 = 𝑧))
69 19.23v 1855 . . . . . . 7 (∀𝑤(∃𝑣((𝑤𝐴𝑣𝐴) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣)) → 𝑦 = 𝑧) ↔ (∃𝑤𝑣((𝑤𝐴𝑣𝐴) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣)) → 𝑦 = 𝑧))
70 r2al 2454 . . . . . . . 8 (∀𝑤𝐴𝑣𝐴 ((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → 𝑦 = 𝑧) ↔ ∀𝑤𝑣((𝑤𝐴𝑣𝐴) → ((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → 𝑦 = 𝑧)))
71 impexp 261 . . . . . . . . 9 ((((𝑤𝐴𝑣𝐴) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣)) → 𝑦 = 𝑧) ↔ ((𝑤𝐴𝑣𝐴) → ((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → 𝑦 = 𝑧)))
72712albii 1447 . . . . . . . 8 (∀𝑤𝑣(((𝑤𝐴𝑣𝐴) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣)) → 𝑦 = 𝑧) ↔ ∀𝑤𝑣((𝑤𝐴𝑣𝐴) → ((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → 𝑦 = 𝑧)))
73 19.23v 1855 . . . . . . . . 9 (∀𝑣(((𝑤𝐴𝑣𝐴) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣)) → 𝑦 = 𝑧) ↔ (∃𝑣((𝑤𝐴𝑣𝐴) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣)) → 𝑦 = 𝑧))
7473albii 1446 . . . . . . . 8 (∀𝑤𝑣(((𝑤𝐴𝑣𝐴) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣)) → 𝑦 = 𝑧) ↔ ∀𝑤(∃𝑣((𝑤𝐴𝑣𝐴) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣)) → 𝑦 = 𝑧))
7570, 72, 743bitr2ri 208 . . . . . . 7 (∀𝑤(∃𝑣((𝑤𝐴𝑣𝐴) ∧ (⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣)) → 𝑦 = 𝑧) ↔ ∀𝑤𝐴𝑣𝐴 ((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → 𝑦 = 𝑧))
7668, 69, 753bitr2i 207 . . . . . 6 (((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧) ↔ ∀𝑤𝐴𝑣𝐴 ((⟨𝑥, 𝑦⟩ ∈ 𝑤 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝑣) → 𝑦 = 𝑧))
7727, 58, 763imtr4i 200 . . . . 5 (∀𝑓𝐴𝑔𝐴 (Fun 𝑓 ∧ (𝑓𝑔𝑔𝑓)) → ((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
7877alrimiv 1846 . . . 4 (∀𝑓𝐴𝑔𝐴 (Fun 𝑓 ∧ (𝑓𝑔𝑔𝑓)) → ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
7978alrimivv 1847 . . 3 (∀𝑓𝐴𝑔𝐴 (Fun 𝑓 ∧ (𝑓𝑔𝑔𝑓)) → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
807, 79syl 14 . 2 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧))
81 dffun4 5134 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐴) → 𝑦 = 𝑧)))
825, 80, 81sylanbrc 413 1 (∀𝑓𝐴 (Fun 𝑓 ∧ ∀𝑔𝐴 (𝑓𝑔𝑔𝑓)) → Fun 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 697  wal 1329  wex 1468  wcel 1480  wral 2416  wss 3071  cop 3530   cuni 3736  Rel wrel 4544  Fun wfun 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-id 4215  df-rel 4546  df-cnv 4547  df-co 4548  df-fun 5125
This theorem is referenced by:  funcnvuni  5192  fun11uni  5193  ennnfonelemfun  11930
  Copyright terms: Public domain W3C validator