ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fv2 GIF version

Theorem fv2 5201
Description: Alternate definition of function value. Definition 10.11 of [Quine] p. 68. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fv2 (𝐹𝐴) = {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem fv2
StepHypRef Expression
1 df-fv 4938 . 2 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
2 dfiota2 4896 . 2 (℩𝑦𝐴𝐹𝑦) = {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥)}
31, 2eqtri 2076 1 (𝐹𝐴) = {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥)}
Colors of variables: wff set class
Syntax hints:  wb 102  wal 1257   = wceq 1259  {cab 2042   cuni 3608   class class class wbr 3792  cio 4893  cfv 4930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-rex 2329  df-sn 3409  df-uni 3609  df-iota 4895  df-fv 4938
This theorem is referenced by:  elfv  5204
  Copyright terms: Public domain W3C validator