ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fveq12d GIF version

Theorem fveq12d 5209
Description: Equality deduction for function value. (Contributed by FL, 22-Dec-2008.)
Hypotheses
Ref Expression
fveq12d.1 (𝜑𝐹 = 𝐺)
fveq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
fveq12d (𝜑 → (𝐹𝐴) = (𝐺𝐵))

Proof of Theorem fveq12d
StepHypRef Expression
1 fveq12d.1 . . 3 (𝜑𝐹 = 𝐺)
21fveq1d 5205 . 2 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
3 fveq12d.2 . . 3 (𝜑𝐴 = 𝐵)
43fveq2d 5207 . 2 (𝜑 → (𝐺𝐴) = (𝐺𝐵))
52, 4eqtrd 2086 1 (𝜑 → (𝐹𝐴) = (𝐺𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1257  cfv 4927
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036
This theorem depends on definitions:  df-bi 114  df-3an 896  df-tru 1260  df-nf 1364  df-sb 1660  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-rex 2327  df-v 2574  df-un 2947  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-br 3790  df-iota 4892  df-fv 4935
This theorem is referenced by:  nffvd  5212  fvsng  5384  tfrlem3ag  5952  tfrlem3a  5953  tfrlemi1  5974  climshft2  10021
  Copyright terms: Public domain W3C validator