ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvi GIF version

Theorem fvi 5255
Description: The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fvi (𝐴𝑉 → ( I ‘𝐴) = 𝐴)

Proof of Theorem fvi
StepHypRef Expression
1 funi 4957 . 2 Fun I
2 ididg 4514 . 2 (𝐴𝑉𝐴 I 𝐴)
3 funbrfv 5237 . 2 (Fun I → (𝐴 I 𝐴 → ( I ‘𝐴) = 𝐴))
41, 2, 3mpsyl 63 1 (𝐴𝑉 → ( I ‘𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1257  wcel 1407   class class class wbr 3789   I cid 4050  Fun wfun 4921  cfv 4927
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-sep 3900  ax-pow 3952  ax-pr 3969
This theorem depends on definitions:  df-bi 114  df-3an 896  df-tru 1260  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ral 2326  df-rex 2327  df-v 2574  df-sbc 2785  df-un 2947  df-in 2949  df-ss 2956  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-br 3790  df-opab 3844  df-id 4055  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-iota 4892  df-fun 4929  df-fv 4935
This theorem is referenced by:  fvresi  5381  facnn  9559  fac0  9560  fac1  9561  facp1  9562  ibcval5  9595  bcn2  9596  climshft2  10021
  Copyright terms: Public domain W3C validator