Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz01or GIF version

Theorem fz01or 10190
 Description: An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.)
Assertion
Ref Expression
fz01or (𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1))

Proof of Theorem fz01or
StepHypRef Expression
1 1eluzge0 8612 . . . . . 6 1 ∈ (ℤ‘0)
2 eluzfz1 8997 . . . . . 6 (1 ∈ (ℤ‘0) → 0 ∈ (0...1))
31, 2ax-mp 7 . . . . 5 0 ∈ (0...1)
4 fzsplit 9017 . . . . 5 (0 ∈ (0...1) → (0...1) = ((0...0) ∪ ((0 + 1)...1)))
53, 4ax-mp 7 . . . 4 (0...1) = ((0...0) ∪ ((0 + 1)...1))
65eleq2i 2120 . . 3 (𝐴 ∈ (0...1) ↔ 𝐴 ∈ ((0...0) ∪ ((0 + 1)...1)))
7 elun 3112 . . 3 (𝐴 ∈ ((0...0) ∪ ((0 + 1)...1)) ↔ (𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1)))
86, 7bitri 177 . 2 (𝐴 ∈ (0...1) ↔ (𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1)))
9 elfz1eq 9001 . . . 4 (𝐴 ∈ (0...0) → 𝐴 = 0)
10 0nn0 8254 . . . . . . 7 0 ∈ ℕ0
11 nn0uz 8603 . . . . . . 7 0 = (ℤ‘0)
1210, 11eleqtri 2128 . . . . . 6 0 ∈ (ℤ‘0)
13 eluzfz1 8997 . . . . . 6 (0 ∈ (ℤ‘0) → 0 ∈ (0...0))
1412, 13ax-mp 7 . . . . 5 0 ∈ (0...0)
15 eleq1 2116 . . . . 5 (𝐴 = 0 → (𝐴 ∈ (0...0) ↔ 0 ∈ (0...0)))
1614, 15mpbiri 161 . . . 4 (𝐴 = 0 → 𝐴 ∈ (0...0))
179, 16impbii 121 . . 3 (𝐴 ∈ (0...0) ↔ 𝐴 = 0)
18 0p1e1 8104 . . . . . 6 (0 + 1) = 1
1918oveq1i 5550 . . . . 5 ((0 + 1)...1) = (1...1)
2019eleq2i 2120 . . . 4 (𝐴 ∈ ((0 + 1)...1) ↔ 𝐴 ∈ (1...1))
21 elfz1eq 9001 . . . . 5 (𝐴 ∈ (1...1) → 𝐴 = 1)
22 1nn 8001 . . . . . . . 8 1 ∈ ℕ
23 nnuz 8604 . . . . . . . 8 ℕ = (ℤ‘1)
2422, 23eleqtri 2128 . . . . . . 7 1 ∈ (ℤ‘1)
25 eluzfz1 8997 . . . . . . 7 (1 ∈ (ℤ‘1) → 1 ∈ (1...1))
2624, 25ax-mp 7 . . . . . 6 1 ∈ (1...1)
27 eleq1 2116 . . . . . 6 (𝐴 = 1 → (𝐴 ∈ (1...1) ↔ 1 ∈ (1...1)))
2826, 27mpbiri 161 . . . . 5 (𝐴 = 1 → 𝐴 ∈ (1...1))
2921, 28impbii 121 . . . 4 (𝐴 ∈ (1...1) ↔ 𝐴 = 1)
3020, 29bitri 177 . . 3 (𝐴 ∈ ((0 + 1)...1) ↔ 𝐴 = 1)
3117, 30orbi12i 691 . 2 ((𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1)) ↔ (𝐴 = 0 ∨ 𝐴 = 1))
328, 31bitri 177 1 (𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1))
 Colors of variables: wff set class Syntax hints:   ↔ wb 102   ∨ wo 639   = wceq 1259   ∈ wcel 1409   ∪ cun 2943  ‘cfv 4930  (class class class)co 5540  0cc0 6947  1c1 6948   + caddc 6950  ℕcn 7990  ℕ0cn0 8239  ℤ≥cuz 8569  ...cfz 8976 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-apti 7057  ax-pre-ltadd 7058 This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-inn 7991  df-n0 8240  df-z 8303  df-uz 8570  df-fz 8977 This theorem is referenced by:  mod2eq1n2dvds  10191
 Copyright terms: Public domain W3C validator