ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzf GIF version

Theorem fzf 9161
Description: Establish the domain and codomain of the finite integer sequence function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 16-Nov-2013.)
Assertion
Ref Expression
fzf ...:(ℤ × ℤ)⟶𝒫 ℤ

Proof of Theorem fzf
Dummy variables 𝑘 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3088 . . . 4 {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)} ⊆ ℤ
2 zex 8493 . . . . 5 ℤ ∈ V
32elpw2 3952 . . . 4 ({𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)} ∈ 𝒫 ℤ ↔ {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)} ⊆ ℤ)
41, 3mpbir 144 . . 3 {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)} ∈ 𝒫 ℤ
54rgen2w 2424 . 2 𝑚 ∈ ℤ ∀𝑛 ∈ ℤ {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)} ∈ 𝒫 ℤ
6 df-fz 9158 . . 3 ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)})
76fmpt2 5878 . 2 (∀𝑚 ∈ ℤ ∀𝑛 ∈ ℤ {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)} ∈ 𝒫 ℤ ↔ ...:(ℤ × ℤ)⟶𝒫 ℤ)
85, 7mpbi 143 1 ...:(ℤ × ℤ)⟶𝒫 ℤ
Colors of variables: wff set class
Syntax hints:  wa 102  wcel 1434  wral 2353  {crab 2357  wss 2982  𝒫 cpw 3400   class class class wbr 3805   × cxp 4389  wf 4948  cle 7268  cz 8484  ...cfz 9157
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-cnex 7181  ax-resscn 7182
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-fv 4960  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-neg 7401  df-z 8485  df-fz 9158
This theorem is referenced by:  fzen  9190  fzof  9283  fzoval  9287
  Copyright terms: Public domain W3C validator