![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fznn0sub2 | GIF version |
Description: Subtraction closure for a member of a finite set of sequential nonnegative integers. (Contributed by NM, 26-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fznn0sub2 | ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ (0...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzle1 9111 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) → 0 ≤ 𝐾) | |
2 | elfzel2 9108 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℤ) | |
3 | elfzelz 9110 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ) | |
4 | zre 8425 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
5 | zre 8425 | . . . . 5 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
6 | subge02 7638 | . . . . 5 ⊢ ((𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ 𝐾 ↔ (𝑁 − 𝐾) ≤ 𝑁)) | |
7 | 4, 5, 6 | syl2an 283 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (0 ≤ 𝐾 ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
8 | 2, 3, 7 | syl2anc 403 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) → (0 ≤ 𝐾 ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
9 | 1, 8 | mpbid 145 | . 2 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ≤ 𝑁) |
10 | fznn0sub 9140 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) | |
11 | nn0uz 8723 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
12 | 10, 11 | syl6eleq 2172 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ (ℤ≥‘0)) |
13 | elfz5 9102 | . . 3 ⊢ (((𝑁 − 𝐾) ∈ (ℤ≥‘0) ∧ 𝑁 ∈ ℤ) → ((𝑁 − 𝐾) ∈ (0...𝑁) ↔ (𝑁 − 𝐾) ≤ 𝑁)) | |
14 | 12, 2, 13 | syl2anc 403 | . 2 ⊢ (𝐾 ∈ (0...𝑁) → ((𝑁 − 𝐾) ∈ (0...𝑁) ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
15 | 9, 14 | mpbird 165 | 1 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ (0...𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∈ wcel 1434 class class class wbr 3787 ‘cfv 4926 (class class class)co 5537 ℝcr 7031 0cc0 7032 ≤ cle 7205 − cmin 7335 ℕ0cn0 8344 ℤcz 8421 ℤ≥cuz 8689 ...cfz 9094 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-pow 3950 ax-pr 3966 ax-un 4190 ax-setind 4282 ax-cnex 7118 ax-resscn 7119 ax-1cn 7120 ax-1re 7121 ax-icn 7122 ax-addcl 7123 ax-addrcl 7124 ax-mulcl 7125 ax-addcom 7127 ax-addass 7129 ax-distr 7131 ax-i2m1 7132 ax-0lt1 7133 ax-0id 7135 ax-rnegex 7136 ax-cnre 7138 ax-pre-ltirr 7139 ax-pre-ltwlin 7140 ax-pre-lttrn 7141 ax-pre-ltadd 7143 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-reu 2356 df-rab 2358 df-v 2604 df-sbc 2817 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-uni 3604 df-int 3639 df-br 3788 df-opab 3842 df-mpt 3843 df-id 4050 df-xp 4371 df-rel 4372 df-cnv 4373 df-co 4374 df-dm 4375 df-rn 4376 df-res 4377 df-ima 4378 df-iota 4891 df-fun 4928 df-fn 4929 df-f 4930 df-fv 4934 df-riota 5493 df-ov 5540 df-oprab 5541 df-mpt2 5542 df-pnf 7206 df-mnf 7207 df-xr 7208 df-ltxr 7209 df-le 7210 df-sub 7337 df-neg 7338 df-inn 8096 df-n0 8345 df-z 8422 df-uz 8690 df-fz 9095 |
This theorem is referenced by: uzsubfz0 9206 bccmpl 9767 |
Copyright terms: Public domain | W3C validator |