ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzofzp1 GIF version

Theorem fzofzp1 10004
Description: If a point is in a half-open range, the next point is in the closed range. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Assertion
Ref Expression
fzofzp1 (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴...𝐵))

Proof of Theorem fzofzp1
StepHypRef Expression
1 elfzoel1 9922 . . . 4 (𝐶 ∈ (𝐴..^𝐵) → 𝐴 ∈ ℤ)
2 uzid 9340 . . . 4 (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ𝐴))
3 peano2uz 9378 . . . 4 (𝐴 ∈ (ℤ𝐴) → (𝐴 + 1) ∈ (ℤ𝐴))
4 fzoss1 9948 . . . 4 ((𝐴 + 1) ∈ (ℤ𝐴) → ((𝐴 + 1)..^(𝐵 + 1)) ⊆ (𝐴..^(𝐵 + 1)))
51, 2, 3, 44syl 18 . . 3 (𝐶 ∈ (𝐴..^𝐵) → ((𝐴 + 1)..^(𝐵 + 1)) ⊆ (𝐴..^(𝐵 + 1)))
6 1z 9080 . . . 4 1 ∈ ℤ
7 fzoaddel 9969 . . . 4 ((𝐶 ∈ (𝐴..^𝐵) ∧ 1 ∈ ℤ) → (𝐶 + 1) ∈ ((𝐴 + 1)..^(𝐵 + 1)))
86, 7mpan2 421 . . 3 (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ ((𝐴 + 1)..^(𝐵 + 1)))
95, 8sseldd 3098 . 2 (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴..^(𝐵 + 1)))
10 elfzoel2 9923 . . 3 (𝐶 ∈ (𝐴..^𝐵) → 𝐵 ∈ ℤ)
11 fzval3 9981 . . 3 (𝐵 ∈ ℤ → (𝐴...𝐵) = (𝐴..^(𝐵 + 1)))
1210, 11syl 14 . 2 (𝐶 ∈ (𝐴..^𝐵) → (𝐴...𝐵) = (𝐴..^(𝐵 + 1)))
139, 12eleqtrrd 2219 1 (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴...𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  wss 3071  cfv 5123  (class class class)co 5774  1c1 7621   + caddc 7623  cz 9054  cuz 9326  ...cfz 9790  ..^cfzo 9919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-fzo 9920
This theorem is referenced by:  fzofzp1b  10005  exfzdc  10017  seq3clss  10240  seq3caopr3  10254  seq3caopr2  10255  seq3f1olemp  10275  seq3id3  10280  ser3ge0  10290  telfsumo  11235  telfsumo2  11236  fsumparts  11239  prodfap0  11314  prodfrecap  11315
  Copyright terms: Public domain W3C validator