![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzofzp1b | GIF version |
Description: If a point is in a half-open range, the next point is in the closed range. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
fzofzp1b | ⊢ (𝐶 ∈ (ℤ≥‘𝐴) → (𝐶 ∈ (𝐴..^𝐵) ↔ (𝐶 + 1) ∈ (𝐴...𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzofzp1 9383 | . 2 ⊢ (𝐶 ∈ (𝐴..^𝐵) → (𝐶 + 1) ∈ (𝐴...𝐵)) | |
2 | simpl 107 | . . . . 5 ⊢ ((𝐶 ∈ (ℤ≥‘𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → 𝐶 ∈ (ℤ≥‘𝐴)) | |
3 | eluzelz 8779 | . . . . . 6 ⊢ (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ ℤ) | |
4 | elfzuz3 9188 | . . . . . 6 ⊢ ((𝐶 + 1) ∈ (𝐴...𝐵) → 𝐵 ∈ (ℤ≥‘(𝐶 + 1))) | |
5 | eluzp1m1 8793 | . . . . . 6 ⊢ ((𝐶 ∈ ℤ ∧ 𝐵 ∈ (ℤ≥‘(𝐶 + 1))) → (𝐵 − 1) ∈ (ℤ≥‘𝐶)) | |
6 | 3, 4, 5 | syl2an 283 | . . . . 5 ⊢ ((𝐶 ∈ (ℤ≥‘𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → (𝐵 − 1) ∈ (ℤ≥‘𝐶)) |
7 | elfzuzb 9185 | . . . . 5 ⊢ (𝐶 ∈ (𝐴...(𝐵 − 1)) ↔ (𝐶 ∈ (ℤ≥‘𝐴) ∧ (𝐵 − 1) ∈ (ℤ≥‘𝐶))) | |
8 | 2, 6, 7 | sylanbrc 408 | . . . 4 ⊢ ((𝐶 ∈ (ℤ≥‘𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → 𝐶 ∈ (𝐴...(𝐵 − 1))) |
9 | elfzel2 9189 | . . . . . 6 ⊢ ((𝐶 + 1) ∈ (𝐴...𝐵) → 𝐵 ∈ ℤ) | |
10 | 9 | adantl 271 | . . . . 5 ⊢ ((𝐶 ∈ (ℤ≥‘𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → 𝐵 ∈ ℤ) |
11 | fzoval 9305 | . . . . 5 ⊢ (𝐵 ∈ ℤ → (𝐴..^𝐵) = (𝐴...(𝐵 − 1))) | |
12 | 10, 11 | syl 14 | . . . 4 ⊢ ((𝐶 ∈ (ℤ≥‘𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → (𝐴..^𝐵) = (𝐴...(𝐵 − 1))) |
13 | 8, 12 | eleqtrrd 2162 | . . 3 ⊢ ((𝐶 ∈ (ℤ≥‘𝐴) ∧ (𝐶 + 1) ∈ (𝐴...𝐵)) → 𝐶 ∈ (𝐴..^𝐵)) |
14 | 13 | ex 113 | . 2 ⊢ (𝐶 ∈ (ℤ≥‘𝐴) → ((𝐶 + 1) ∈ (𝐴...𝐵) → 𝐶 ∈ (𝐴..^𝐵))) |
15 | 1, 14 | impbid2 141 | 1 ⊢ (𝐶 ∈ (ℤ≥‘𝐴) → (𝐶 ∈ (𝐴..^𝐵) ↔ (𝐶 + 1) ∈ (𝐴...𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1285 ∈ wcel 1434 ‘cfv 4952 (class class class)co 5564 1c1 7114 + caddc 7116 − cmin 7416 ℤcz 8502 ℤ≥cuz 8770 ...cfz 9175 ..^cfzo 9299 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-cnex 7199 ax-resscn 7200 ax-1cn 7201 ax-1re 7202 ax-icn 7203 ax-addcl 7204 ax-addrcl 7205 ax-mulcl 7206 ax-addcom 7208 ax-addass 7210 ax-distr 7212 ax-i2m1 7213 ax-0lt1 7214 ax-0id 7216 ax-rnegex 7217 ax-cnre 7219 ax-pre-ltirr 7220 ax-pre-ltwlin 7221 ax-pre-lttrn 7222 ax-pre-ltadd 7224 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2612 df-sbc 2825 df-csb 2918 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-iun 3700 df-br 3806 df-opab 3860 df-mpt 3861 df-id 4076 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-fv 4960 df-riota 5520 df-ov 5567 df-oprab 5568 df-mpt2 5569 df-1st 5819 df-2nd 5820 df-pnf 7287 df-mnf 7288 df-xr 7289 df-ltxr 7290 df-le 7291 df-sub 7418 df-neg 7419 df-inn 8177 df-n0 8426 df-z 8503 df-uz 8771 df-fz 9176 df-fzo 9300 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |