ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzosplitprm1 GIF version

Theorem fzosplitprm1 9309
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
Assertion
Ref Expression
fzosplitprm1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}))

Proof of Theorem fzosplitprm1
StepHypRef Expression
1 simp1 939 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℤ)
2 simp2 940 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ)
3 zre 8425 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4 zre 8425 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
5 ltle 7254 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
63, 4, 5syl2an 283 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴𝐵))
763impia 1136 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴𝐵)
8 eluz2 8695 . . . 4 (𝐵 ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵))
91, 2, 7, 8syl3anbrc 1123 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐵 ∈ (ℤ𝐴))
10 fzosplitsn 9308 . . 3 (𝐵 ∈ (ℤ𝐴) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵}))
119, 10syl 14 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^𝐵) ∪ {𝐵}))
12 zcn 8426 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
13 ax-1cn 7120 . . . . . . 7 1 ∈ ℂ
14 npcan 7373 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐵 − 1) + 1) = 𝐵)
1514eqcomd 2087 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → 𝐵 = ((𝐵 − 1) + 1))
1612, 13, 15sylancl 404 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 = ((𝐵 − 1) + 1))
17163ad2ant2 961 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐵 = ((𝐵 − 1) + 1))
1817oveq2d 5553 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^𝐵) = (𝐴..^((𝐵 − 1) + 1)))
19 peano2zm 8459 . . . . . . 7 (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ)
20193ad2ant2 961 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ ℤ)
21 zltlem1 8478 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵𝐴 ≤ (𝐵 − 1)))
2221biimp3a 1277 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → 𝐴 ≤ (𝐵 − 1))
23 eluz2 8695 . . . . . 6 ((𝐵 − 1) ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ (𝐵 − 1) ∈ ℤ ∧ 𝐴 ≤ (𝐵 − 1)))
241, 20, 22, 23syl3anbrc 1123 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ (ℤ𝐴))
25 fzosplitsn 9308 . . . . 5 ((𝐵 − 1) ∈ (ℤ𝐴) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
2624, 25syl 14 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
2718, 26eqtrd 2114 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
2827uneq1d 3126 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → ((𝐴..^𝐵) ∪ {𝐵}) = (((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) ∪ {𝐵}))
29 unass 3130 . . 3 (((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) ∪ {𝐵}) = ((𝐴..^(𝐵 − 1)) ∪ ({(𝐵 − 1)} ∪ {𝐵}))
30 df-pr 3407 . . . . . 6 {(𝐵 − 1), 𝐵} = ({(𝐵 − 1)} ∪ {𝐵})
3130eqcomi 2086 . . . . 5 ({(𝐵 − 1)} ∪ {𝐵}) = {(𝐵 − 1), 𝐵}
3231a1i 9 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → ({(𝐵 − 1)} ∪ {𝐵}) = {(𝐵 − 1), 𝐵})
3332uneq2d 3127 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → ((𝐴..^(𝐵 − 1)) ∪ ({(𝐵 − 1)} ∪ {𝐵})) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}))
3429, 33syl5eq 2126 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}) ∪ {𝐵}) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}))
3511, 28, 343eqtrd 2118 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → (𝐴..^(𝐵 + 1)) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1), 𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 920   = wceq 1285  wcel 1434  cun 2972  {csn 3400  {cpr 3401   class class class wbr 3787  cfv 4926  (class class class)co 5537  cc 7030  cr 7031  1c1 7033   + caddc 7035   < clt 7204  cle 7205  cmin 7335  cz 8421  cuz 8689  ..^cfzo 9218
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-cnex 7118  ax-resscn 7119  ax-1cn 7120  ax-1re 7121  ax-icn 7122  ax-addcl 7123  ax-addrcl 7124  ax-mulcl 7125  ax-addcom 7127  ax-addass 7129  ax-distr 7131  ax-i2m1 7132  ax-0lt1 7133  ax-0id 7135  ax-rnegex 7136  ax-cnre 7138  ax-pre-ltirr 7139  ax-pre-ltwlin 7140  ax-pre-lttrn 7141  ax-pre-apti 7142  ax-pre-ltadd 7143
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-iun 3682  df-br 3788  df-opab 3842  df-mpt 3843  df-id 4050  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-fv 4934  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-pnf 7206  df-mnf 7207  df-xr 7208  df-ltxr 7209  df-le 7210  df-sub 7337  df-neg 7338  df-inn 8096  df-n0 8345  df-z 8422  df-uz 8690  df-fz 9095  df-fzo 9219
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator