![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzostep1 | GIF version |
Description: Two possibilities for a number one greater than a number in a half-open range. (Contributed by Stefan O'Rear, 23-Aug-2015.) |
Ref | Expression |
---|---|
fzostep1 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzoel1 9232 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | |
2 | uzid 8714 | . . . 4 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ (ℤ≥‘𝐵)) | |
3 | peano2uz 8752 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐵) → (𝐵 + 1) ∈ (ℤ≥‘𝐵)) | |
4 | fzoss1 9257 | . . . 4 ⊢ ((𝐵 + 1) ∈ (ℤ≥‘𝐵) → ((𝐵 + 1)..^(𝐶 + 1)) ⊆ (𝐵..^(𝐶 + 1))) | |
5 | 1, 2, 3, 4 | 4syl 18 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐵 + 1)..^(𝐶 + 1)) ⊆ (𝐵..^(𝐶 + 1))) |
6 | 1z 8458 | . . . 4 ⊢ 1 ∈ ℤ | |
7 | fzoaddel 9278 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 1 ∈ ℤ) → (𝐴 + 1) ∈ ((𝐵 + 1)..^(𝐶 + 1))) | |
8 | 6, 7 | mpan2 416 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐴 + 1) ∈ ((𝐵 + 1)..^(𝐶 + 1))) |
9 | 5, 8 | sseldd 3001 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐴 + 1) ∈ (𝐵..^(𝐶 + 1))) |
10 | elfzoel2 9233 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) | |
11 | elfzolt3 9243 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 < 𝐶) | |
12 | zre 8436 | . . . . . . 7 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
13 | zre 8436 | . . . . . . 7 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℝ) | |
14 | ltle 7265 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 → 𝐵 ≤ 𝐶)) | |
15 | 12, 13, 14 | syl2an 283 | . . . . . 6 ⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 < 𝐶 → 𝐵 ≤ 𝐶)) |
16 | 1, 10, 15 | syl2anc 403 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵 < 𝐶 → 𝐵 ≤ 𝐶)) |
17 | 11, 16 | mpd 13 | . . . 4 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ≤ 𝐶) |
18 | eluz2 8706 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶)) | |
19 | 1, 10, 17, 18 | syl3anbrc 1123 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ (ℤ≥‘𝐵)) |
20 | fzosplitsni 9321 | . . 3 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) → ((𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)) ↔ ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶))) | |
21 | 19, 20 | syl 14 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^(𝐶 + 1)) ↔ ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶))) |
22 | 9, 21 | mpbid 145 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → ((𝐴 + 1) ∈ (𝐵..^𝐶) ∨ (𝐴 + 1) = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∨ wo 662 = wceq 1285 ∈ wcel 1434 ⊆ wss 2974 class class class wbr 3793 ‘cfv 4932 (class class class)co 5543 ℝcr 7042 1c1 7044 + caddc 7046 < clt 7215 ≤ cle 7216 ℤcz 8432 ℤ≥cuz 8700 ..^cfzo 9229 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 ax-cnex 7129 ax-resscn 7130 ax-1cn 7131 ax-1re 7132 ax-icn 7133 ax-addcl 7134 ax-addrcl 7135 ax-mulcl 7136 ax-addcom 7138 ax-addass 7140 ax-distr 7142 ax-i2m1 7143 ax-0lt1 7144 ax-0id 7146 ax-rnegex 7147 ax-cnre 7149 ax-pre-ltirr 7150 ax-pre-ltwlin 7151 ax-pre-lttrn 7152 ax-pre-apti 7153 ax-pre-ltadd 7154 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-reu 2356 df-rab 2358 df-v 2604 df-sbc 2817 df-csb 2910 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-int 3645 df-iun 3688 df-br 3794 df-opab 3848 df-mpt 3849 df-id 4056 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-rn 4382 df-res 4383 df-ima 4384 df-iota 4897 df-fun 4934 df-fn 4935 df-f 4936 df-fv 4940 df-riota 5499 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-1st 5798 df-2nd 5799 df-pnf 7217 df-mnf 7218 df-xr 7219 df-ltxr 7220 df-le 7221 df-sub 7348 df-neg 7349 df-inn 8107 df-n0 8356 df-z 8433 df-uz 8701 df-fz 9106 df-fzo 9230 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |