![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzss1 | GIF version |
Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fzss1 | ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 9187 | . . . . 5 ⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ≥‘𝐾)) | |
2 | id 19 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
3 | uztrn 8786 | . . . . 5 ⊢ ((𝑘 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
4 | 1, 2, 3 | syl2anr 284 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
5 | elfzuz3 9188 | . . . . 5 ⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ≥‘𝑘)) | |
6 | 5 | adantl 271 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑘)) |
7 | elfzuzb 9185 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑘))) | |
8 | 4, 6, 7 | sylanbrc 408 | . . 3 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (𝑀...𝑁)) |
9 | 8 | ex 113 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (𝑀...𝑁))) |
10 | 9 | ssrdv 3014 | 1 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1434 ⊆ wss 2982 ‘cfv 4952 (class class class)co 5564 ℤ≥cuz 8770 ...cfz 9175 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-cnex 7199 ax-resscn 7200 ax-pre-ltwlin 7221 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2612 df-sbc 2825 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-br 3806 df-opab 3860 df-mpt 3861 df-id 4076 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-fv 4960 df-ov 5567 df-oprab 5568 df-mpt2 5569 df-pnf 7287 df-mnf 7288 df-xr 7289 df-ltxr 7290 df-le 7291 df-neg 7419 df-z 8503 df-uz 8771 df-fz 9176 |
This theorem is referenced by: fzp1ss 9236 ige2m1fz 9273 fzoss1 9327 fzossnn0 9331 isermono 9623 iseqsplit 9624 bcpasc 9860 |
Copyright terms: Public domain | W3C validator |