![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ge0nemnf | GIF version |
Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
ge0nemnf | ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ge0gtmnf 8966 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → -∞ < 𝐴) | |
2 | ngtmnft 8961 | . . . . 5 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) | |
3 | 2 | adantr 270 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
4 | 3 | biimpd 142 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → (𝐴 = -∞ → ¬ -∞ < 𝐴)) |
5 | 4 | necon2ad 2303 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → (-∞ < 𝐴 → 𝐴 ≠ -∞)) |
6 | 1, 5 | mpd 13 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1285 ∈ wcel 1434 ≠ wne 2246 class class class wbr 3793 0cc0 7043 -∞cmnf 7213 ℝ*cxr 7214 < clt 7215 ≤ cle 7216 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 ax-cnex 7129 ax-resscn 7130 ax-1re 7132 ax-addrcl 7135 ax-rnegex 7147 ax-pre-ltirr 7150 ax-pre-ltwlin 7151 ax-pre-lttrn 7152 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-rab 2358 df-v 2604 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-br 3794 df-opab 3848 df-po 4059 df-iso 4060 df-xp 4377 df-cnv 4379 df-pnf 7217 df-mnf 7218 df-xr 7219 df-ltxr 7220 df-le 7221 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |