ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpassg GIF version

Theorem genpassg 7327
Description: Associativity of an operation on reals. (Contributed by Jim Kingdon, 11-Dec-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpassg.4 dom 𝐹 = (P × P)
genpassg.5 ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)
genpassg.6 ((𝑓Q𝑔QQ) → ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺)))
Assertion
Ref Expression
genpassg ((𝐴P𝐵P𝐶P) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑥,𝐺,𝑦,𝑧,𝑓,𝑔,,𝑤,𝑣   𝑓,𝐹,𝑔   𝐶,𝑓,𝑔,,𝑣,𝑤,𝑥,𝑦,𝑧   ,𝐹,𝑣,𝑤,𝑥,𝑦,𝑧

Proof of Theorem genpassg
StepHypRef Expression
1 genpelvl.1 . . 3 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
2 genpelvl.2 . . 3 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
3 genpassg.4 . . 3 dom 𝐹 = (P × P)
4 genpassg.5 . . 3 ((𝑓P𝑔P) → (𝑓𝐹𝑔) ∈ P)
5 genpassg.6 . . 3 ((𝑓Q𝑔QQ) → ((𝑓𝐺𝑔)𝐺) = (𝑓𝐺(𝑔𝐺)))
61, 2, 3, 4, 5genpassl 7325 . 2 ((𝐴P𝐵P𝐶P) → (1st ‘((𝐴𝐹𝐵)𝐹𝐶)) = (1st ‘(𝐴𝐹(𝐵𝐹𝐶))))
71, 2, 3, 4, 5genpassu 7326 . 2 ((𝐴P𝐵P𝐶P) → (2nd ‘((𝐴𝐹𝐵)𝐹𝐶)) = (2nd ‘(𝐴𝐹(𝐵𝐹𝐶))))
84caovcl 5918 . . . . 5 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ P)
94caovcl 5918 . . . . 5 (((𝐴𝐹𝐵) ∈ P𝐶P) → ((𝐴𝐹𝐵)𝐹𝐶) ∈ P)
108, 9sylan 281 . . . 4 (((𝐴P𝐵P) ∧ 𝐶P) → ((𝐴𝐹𝐵)𝐹𝐶) ∈ P)
11103impa 1176 . . 3 ((𝐴P𝐵P𝐶P) → ((𝐴𝐹𝐵)𝐹𝐶) ∈ P)
124caovcl 5918 . . . . 5 ((𝐵P𝐶P) → (𝐵𝐹𝐶) ∈ P)
134caovcl 5918 . . . . 5 ((𝐴P ∧ (𝐵𝐹𝐶) ∈ P) → (𝐴𝐹(𝐵𝐹𝐶)) ∈ P)
1412, 13sylan2 284 . . . 4 ((𝐴P ∧ (𝐵P𝐶P)) → (𝐴𝐹(𝐵𝐹𝐶)) ∈ P)
15143impb 1177 . . 3 ((𝐴P𝐵P𝐶P) → (𝐴𝐹(𝐵𝐹𝐶)) ∈ P)
16 preqlu 7273 . . 3 ((((𝐴𝐹𝐵)𝐹𝐶) ∈ P ∧ (𝐴𝐹(𝐵𝐹𝐶)) ∈ P) → (((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)) ↔ ((1st ‘((𝐴𝐹𝐵)𝐹𝐶)) = (1st ‘(𝐴𝐹(𝐵𝐹𝐶))) ∧ (2nd ‘((𝐴𝐹𝐵)𝐹𝐶)) = (2nd ‘(𝐴𝐹(𝐵𝐹𝐶))))))
1711, 15, 16syl2anc 408 . 2 ((𝐴P𝐵P𝐶P) → (((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)) ↔ ((1st ‘((𝐴𝐹𝐵)𝐹𝐶)) = (1st ‘(𝐴𝐹(𝐵𝐹𝐶))) ∧ (2nd ‘((𝐴𝐹𝐵)𝐹𝐶)) = (2nd ‘(𝐴𝐹(𝐵𝐹𝐶))))))
186, 7, 17mpbir2and 928 1 ((𝐴P𝐵P𝐶P) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wrex 2415  {crab 2418  cop 3525   × cxp 4532  dom cdm 4534  cfv 5118  (class class class)co 5767  cmpo 5769  1st c1st 6029  2nd c2nd 6030  Qcnq 7081  Pcnp 7092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-qs 6428  df-ni 7105  df-nqqs 7149  df-inp 7267
This theorem is referenced by:  addassprg  7380  mulassprg  7382
  Copyright terms: Public domain W3C validator