ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpelxp GIF version

Theorem genpelxp 6667
Description: Set containing the result of adding or multiplying positive reals. (Contributed by Jim Kingdon, 5-Dec-2019.)
Hypothesis
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
Assertion
Ref Expression
genpelxp ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ (𝒫 Q × 𝒫 Q))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣   𝑥,𝐺,𝑦,𝑧,𝑤,𝑣
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpelxp
StepHypRef Expression
1 ssrab2 3053 . . . . 5 {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ⊆ Q
2 nqex 6519 . . . . . 6 Q ∈ V
32elpw2 3939 . . . . 5 ({𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q ↔ {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ⊆ Q)
41, 3mpbir 138 . . . 4 {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q
5 ssrab2 3053 . . . . 5 {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ⊆ Q
62elpw2 3939 . . . . 5 ({𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q ↔ {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ⊆ Q)
75, 6mpbir 138 . . . 4 {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q
8 opelxpi 4404 . . . 4 (({𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q ∧ {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))} ∈ 𝒫 Q) → ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ ∈ (𝒫 Q × 𝒫 Q))
94, 7, 8mp2an 410 . . 3 ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ ∈ (𝒫 Q × 𝒫 Q)
10 fveq2 5206 . . . . . . . . 9 (𝑤 = 𝐴 → (1st𝑤) = (1st𝐴))
1110eleq2d 2123 . . . . . . . 8 (𝑤 = 𝐴 → (𝑦 ∈ (1st𝑤) ↔ 𝑦 ∈ (1st𝐴)))
12113anbi1d 1222 . . . . . . 7 (𝑤 = 𝐴 → ((𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))))
13122rexbidv 2366 . . . . . 6 (𝑤 = 𝐴 → (∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))))
1413rabbidv 2566 . . . . 5 (𝑤 = 𝐴 → {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))} = {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))})
15 fveq2 5206 . . . . . . . . 9 (𝑤 = 𝐴 → (2nd𝑤) = (2nd𝐴))
1615eleq2d 2123 . . . . . . . 8 (𝑤 = 𝐴 → (𝑦 ∈ (2nd𝑤) ↔ 𝑦 ∈ (2nd𝐴)))
17163anbi1d 1222 . . . . . . 7 (𝑤 = 𝐴 → ((𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))))
18172rexbidv 2366 . . . . . 6 (𝑤 = 𝐴 → (∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))))
1918rabbidv 2566 . . . . 5 (𝑤 = 𝐴 → {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))} = {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))})
2014, 19opeq12d 3585 . . . 4 (𝑤 = 𝐴 → ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ = ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
21 fveq2 5206 . . . . . . . . 9 (𝑣 = 𝐵 → (1st𝑣) = (1st𝐵))
2221eleq2d 2123 . . . . . . . 8 (𝑣 = 𝐵 → (𝑧 ∈ (1st𝑣) ↔ 𝑧 ∈ (1st𝐵)))
23223anbi2d 1223 . . . . . . 7 (𝑣 = 𝐵 → ((𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))))
24232rexbidv 2366 . . . . . 6 (𝑣 = 𝐵 → (∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))))
2524rabbidv 2566 . . . . 5 (𝑣 = 𝐵 → {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))} = {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))})
26 fveq2 5206 . . . . . . . . 9 (𝑣 = 𝐵 → (2nd𝑣) = (2nd𝐵))
2726eleq2d 2123 . . . . . . . 8 (𝑣 = 𝐵 → (𝑧 ∈ (2nd𝑣) ↔ 𝑧 ∈ (2nd𝐵)))
28273anbi2d 1223 . . . . . . 7 (𝑣 = 𝐵 → ((𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))))
29282rexbidv 2366 . . . . . 6 (𝑣 = 𝐵 → (∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧)) ↔ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))))
3029rabbidv 2566 . . . . 5 (𝑣 = 𝐵 → {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))} = {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))})
3125, 30opeq12d 3585 . . . 4 (𝑣 = 𝐵 → ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ = ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
32 genpelvl.1 . . . 4 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
3320, 31, 32ovmpt2g 5663 . . 3 ((𝐴P𝐵P ∧ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩ ∈ (𝒫 Q × 𝒫 Q)) → (𝐴𝐹𝐵) = ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
349, 33mp3an3 1232 . 2 ((𝐴P𝐵P) → (𝐴𝐹𝐵) = ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝐴) ∧ 𝑧 ∈ (1st𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝐴) ∧ 𝑧 ∈ (2nd𝐵) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
3534, 9syl6eqel 2144 1 ((𝐴P𝐵P) → (𝐴𝐹𝐵) ∈ (𝒫 Q × 𝒫 Q))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  w3a 896   = wceq 1259  wcel 1409  wrex 2324  {crab 2327  wss 2945  𝒫 cpw 3387  cop 3406   × cxp 4371  cfv 4930  (class class class)co 5540  cmpt2 5542  1st c1st 5793  2nd c2nd 5794  Qcnq 6436  Pcnp 6447
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-qs 6143  df-ni 6460  df-nqqs 6504
This theorem is referenced by:  addclpr  6693  mulclpr  6728
  Copyright terms: Public domain W3C validator