ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpmu GIF version

Theorem genpmu 7319
Description: The upper cut produced by addition or multiplication on positive reals is inhabited. (Contributed by Jim Kingdon, 5-Dec-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
Assertion
Ref Expression
genpmu ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑞,𝐴   𝑥,𝐵,𝑦,𝑧,𝑤,𝑣,𝑞   𝑥,𝐺,𝑦,𝑧,𝑤,𝑣,𝑞   𝐹,𝑞
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑧,𝑤,𝑣)

Proof of Theorem genpmu
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7276 . . . 4 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prmu 7279 . . . 4 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑓Q 𝑓 ∈ (2nd𝐴))
3 rexex 2477 . . . 4 (∃𝑓Q 𝑓 ∈ (2nd𝐴) → ∃𝑓 𝑓 ∈ (2nd𝐴))
41, 2, 33syl 17 . . 3 (𝐴P → ∃𝑓 𝑓 ∈ (2nd𝐴))
54adantr 274 . 2 ((𝐴P𝐵P) → ∃𝑓 𝑓 ∈ (2nd𝐴))
6 prop 7276 . . . . 5 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
7 prmu 7279 . . . . 5 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑔Q 𝑔 ∈ (2nd𝐵))
8 rexex 2477 . . . . 5 (∃𝑔Q 𝑔 ∈ (2nd𝐵) → ∃𝑔 𝑔 ∈ (2nd𝐵))
96, 7, 83syl 17 . . . 4 (𝐵P → ∃𝑔 𝑔 ∈ (2nd𝐵))
109ad2antlr 480 . . 3 (((𝐴P𝐵P) ∧ 𝑓 ∈ (2nd𝐴)) → ∃𝑔 𝑔 ∈ (2nd𝐵))
11 genpelvl.1 . . . . . . 7 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
12 genpelvl.2 . . . . . . 7 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
1311, 12genppreclu 7316 . . . . . 6 ((𝐴P𝐵P) → ((𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵)) → (𝑓𝐺𝑔) ∈ (2nd ‘(𝐴𝐹𝐵))))
1413imp 123 . . . . 5 (((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) → (𝑓𝐺𝑔) ∈ (2nd ‘(𝐴𝐹𝐵)))
15 elprnqu 7283 . . . . . . . . . 10 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑓 ∈ (2nd𝐴)) → 𝑓Q)
161, 15sylan 281 . . . . . . . . 9 ((𝐴P𝑓 ∈ (2nd𝐴)) → 𝑓Q)
17 elprnqu 7283 . . . . . . . . . 10 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑔 ∈ (2nd𝐵)) → 𝑔Q)
186, 17sylan 281 . . . . . . . . 9 ((𝐵P𝑔 ∈ (2nd𝐵)) → 𝑔Q)
1916, 18anim12i 336 . . . . . . . 8 (((𝐴P𝑓 ∈ (2nd𝐴)) ∧ (𝐵P𝑔 ∈ (2nd𝐵))) → (𝑓Q𝑔Q))
2019an4s 577 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) → (𝑓Q𝑔Q))
2112caovcl 5918 . . . . . . 7 ((𝑓Q𝑔Q) → (𝑓𝐺𝑔) ∈ Q)
2220, 21syl 14 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) → (𝑓𝐺𝑔) ∈ Q)
23 simpr 109 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) ∧ 𝑞 = (𝑓𝐺𝑔)) → 𝑞 = (𝑓𝐺𝑔))
2423eleq1d 2206 . . . . . 6 ((((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) ∧ 𝑞 = (𝑓𝐺𝑔)) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ (𝑓𝐺𝑔) ∈ (2nd ‘(𝐴𝐹𝐵))))
2522, 24rspcedv 2788 . . . . 5 (((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) → ((𝑓𝐺𝑔) ∈ (2nd ‘(𝐴𝐹𝐵)) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))
2614, 25mpd 13 . . . 4 (((𝐴P𝐵P) ∧ (𝑓 ∈ (2nd𝐴) ∧ 𝑔 ∈ (2nd𝐵))) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))
2726anassrs 397 . . 3 ((((𝐴P𝐵P) ∧ 𝑓 ∈ (2nd𝐴)) ∧ 𝑔 ∈ (2nd𝐵)) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))
2810, 27exlimddv 1870 . 2 (((𝐴P𝐵P) ∧ 𝑓 ∈ (2nd𝐴)) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))
295, 28exlimddv 1870 1 ((𝐴P𝐵P) → ∃𝑞Q 𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wex 1468  wcel 1480  wrex 2415  {crab 2418  cop 3525  cfv 5118  (class class class)co 5767  cmpo 5769  1st c1st 6029  2nd c2nd 6030  Qcnq 7081  Pcnp 7092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-qs 6428  df-ni 7105  df-nqqs 7149  df-inp 7267
This theorem is referenced by:  addclpr  7338  mulclpr  7373
  Copyright terms: Public domain W3C validator