ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grprinvd GIF version

Theorem grprinvd 5721
Description: Deduce right inverse from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grprinvlem.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
grprinvlem.o (𝜑𝑂𝐵)
grprinvlem.i ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)
grprinvlem.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
grprinvlem.n ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
grprinvd.x ((𝜑𝜓) → 𝑋𝐵)
grprinvd.n ((𝜑𝜓) → 𝑁𝐵)
grprinvd.e ((𝜑𝜓) → (𝑁 + 𝑋) = 𝑂)
Assertion
Ref Expression
grprinvd ((𝜑𝜓) → (𝑋 + 𝑁) = 𝑂)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝑂,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑦,𝑁,𝑧   𝑥, + ,𝑦,𝑧   𝑦,𝑋,𝑧   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑧)   𝑁(𝑥)   𝑋(𝑥)

Proof of Theorem grprinvd
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grprinvlem.c . 2 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
2 grprinvlem.o . 2 (𝜑𝑂𝐵)
3 grprinvlem.i . 2 ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)
4 grprinvlem.a . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
5 grprinvlem.n . 2 ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)
613expb 1114 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
76caovclg 5678 . . . 4 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑢 + 𝑣) ∈ 𝐵)
87adantlr 454 . . 3 (((𝜑𝜓) ∧ (𝑢𝐵𝑣𝐵)) → (𝑢 + 𝑣) ∈ 𝐵)
9 grprinvd.x . . 3 ((𝜑𝜓) → 𝑋𝐵)
10 grprinvd.n . . 3 ((𝜑𝜓) → 𝑁𝐵)
118, 9, 10caovcld 5679 . 2 ((𝜑𝜓) → (𝑋 + 𝑁) ∈ 𝐵)
124caovassg 5684 . . . . 5 ((𝜑 ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
1312adantlr 454 . . . 4 (((𝜑𝜓) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
1413, 9, 10, 11caovassd 5685 . . 3 ((𝜑𝜓) → ((𝑋 + 𝑁) + (𝑋 + 𝑁)) = (𝑋 + (𝑁 + (𝑋 + 𝑁))))
15 grprinvd.e . . . . . 6 ((𝜑𝜓) → (𝑁 + 𝑋) = 𝑂)
1615oveq1d 5552 . . . . 5 ((𝜑𝜓) → ((𝑁 + 𝑋) + 𝑁) = (𝑂 + 𝑁))
1713, 10, 9, 10caovassd 5685 . . . . 5 ((𝜑𝜓) → ((𝑁 + 𝑋) + 𝑁) = (𝑁 + (𝑋 + 𝑁)))
183ralrimiva 2407 . . . . . . . 8 (𝜑 → ∀𝑥𝐵 (𝑂 + 𝑥) = 𝑥)
19 oveq2 5545 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑂 + 𝑥) = (𝑂 + 𝑦))
20 id 19 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
2119, 20eqeq12d 2068 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑂 + 𝑥) = 𝑥 ↔ (𝑂 + 𝑦) = 𝑦))
2221cbvralv 2548 . . . . . . . 8 (∀𝑥𝐵 (𝑂 + 𝑥) = 𝑥 ↔ ∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦)
2318, 22sylib 131 . . . . . . 7 (𝜑 → ∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦)
2423adantr 265 . . . . . 6 ((𝜑𝜓) → ∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦)
25 oveq2 5545 . . . . . . . 8 (𝑦 = 𝑁 → (𝑂 + 𝑦) = (𝑂 + 𝑁))
26 id 19 . . . . . . . 8 (𝑦 = 𝑁𝑦 = 𝑁)
2725, 26eqeq12d 2068 . . . . . . 7 (𝑦 = 𝑁 → ((𝑂 + 𝑦) = 𝑦 ↔ (𝑂 + 𝑁) = 𝑁))
2827rspcv 2667 . . . . . 6 (𝑁𝐵 → (∀𝑦𝐵 (𝑂 + 𝑦) = 𝑦 → (𝑂 + 𝑁) = 𝑁))
2910, 24, 28sylc 60 . . . . 5 ((𝜑𝜓) → (𝑂 + 𝑁) = 𝑁)
3016, 17, 293eqtr3d 2094 . . . 4 ((𝜑𝜓) → (𝑁 + (𝑋 + 𝑁)) = 𝑁)
3130oveq2d 5553 . . 3 ((𝜑𝜓) → (𝑋 + (𝑁 + (𝑋 + 𝑁))) = (𝑋 + 𝑁))
3214, 31eqtrd 2086 . 2 ((𝜑𝜓) → ((𝑋 + 𝑁) + (𝑋 + 𝑁)) = (𝑋 + 𝑁))
331, 2, 3, 4, 5, 11, 32grprinvlem 5720 1 ((𝜑𝜓) → (𝑋 + 𝑁) = 𝑂)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  w3a 894   = wceq 1257  wcel 1407  wral 2321  wrex 2322  (class class class)co 5537
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036
This theorem depends on definitions:  df-bi 114  df-3an 896  df-tru 1260  df-nf 1364  df-sb 1660  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ral 2326  df-rex 2327  df-v 2574  df-un 2947  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-br 3790  df-iota 4892  df-fv 4935  df-ov 5540
This theorem is referenced by:  grpridd  5722
  Copyright terms: Public domain W3C validator