ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfzp1 GIF version

Theorem hashfzp1 10570
Description: Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
hashfzp1 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴))

Proof of Theorem hashfzp1
StepHypRef Expression
1 eluzel2 9331 . . . 4 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
2 eluzelz 9335 . . . 4 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
3 zdceq 9126 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID 𝐴 = 𝐵)
41, 2, 3syl2anc 408 . . 3 (𝐵 ∈ (ℤ𝐴) → DECID 𝐴 = 𝐵)
5 exmiddc 821 . . 3 (DECID 𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
64, 5syl 14 . 2 (𝐵 ∈ (ℤ𝐴) → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
7 hash0 10543 . . . . 5 (♯‘∅) = 0
8 eluzelre 9336 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℝ)
98ltp1d 8688 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐵 < (𝐵 + 1))
10 peano2z 9090 . . . . . . . . 9 (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ)
1110ancri 322 . . . . . . . 8 (𝐵 ∈ ℤ → ((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ))
12 fzn 9822 . . . . . . . 8 (((𝐵 + 1) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅))
132, 11, 123syl 17 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → (𝐵 < (𝐵 + 1) ↔ ((𝐵 + 1)...𝐵) = ∅))
149, 13mpbid 146 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → ((𝐵 + 1)...𝐵) = ∅)
1514fveq2d 5425 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (♯‘∅))
162zcnd 9174 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℂ)
1716subidd 8061 . . . . 5 (𝐵 ∈ (ℤ𝐴) → (𝐵𝐵) = 0)
187, 15, 173eqtr4a 2198 . . . 4 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐵 + 1)...𝐵)) = (𝐵𝐵))
19 oveq1 5781 . . . . . . 7 (𝐴 = 𝐵 → (𝐴 + 1) = (𝐵 + 1))
2019oveq1d 5789 . . . . . 6 (𝐴 = 𝐵 → ((𝐴 + 1)...𝐵) = ((𝐵 + 1)...𝐵))
2120fveq2d 5425 . . . . 5 (𝐴 = 𝐵 → (♯‘((𝐴 + 1)...𝐵)) = (♯‘((𝐵 + 1)...𝐵)))
22 oveq2 5782 . . . . 5 (𝐴 = 𝐵 → (𝐵𝐴) = (𝐵𝐵))
2321, 22eqeq12d 2154 . . . 4 (𝐴 = 𝐵 → ((♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴) ↔ (♯‘((𝐵 + 1)...𝐵)) = (𝐵𝐵)))
2418, 23syl5ibr 155 . . 3 (𝐴 = 𝐵 → (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴)))
25 uzp1 9359 . . . . . . . 8 (𝐵 ∈ (ℤ𝐴) → (𝐵 = 𝐴𝐵 ∈ (ℤ‘(𝐴 + 1))))
26 pm2.24 610 . . . . . . . . . 10 (𝐴 = 𝐵 → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
2726eqcoms 2142 . . . . . . . . 9 (𝐵 = 𝐴 → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
28 ax-1 6 . . . . . . . . 9 (𝐵 ∈ (ℤ‘(𝐴 + 1)) → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
2927, 28jaoi 705 . . . . . . . 8 ((𝐵 = 𝐴𝐵 ∈ (ℤ‘(𝐴 + 1))) → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
3025, 29syl 14 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → (¬ 𝐴 = 𝐵𝐵 ∈ (ℤ‘(𝐴 + 1))))
3130impcom 124 . . . . . 6 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → 𝐵 ∈ (ℤ‘(𝐴 + 1)))
32 hashfz 10567 . . . . . 6 (𝐵 ∈ (ℤ‘(𝐴 + 1)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1))
3331, 32syl 14 . . . . 5 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = ((𝐵 − (𝐴 + 1)) + 1))
341zcnd 9174 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℂ)
35 1cnd 7782 . . . . . . 7 (𝐵 ∈ (ℤ𝐴) → 1 ∈ ℂ)
3616, 34, 35nppcan2d 8099 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵𝐴))
3736adantl 275 . . . . 5 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → ((𝐵 − (𝐴 + 1)) + 1) = (𝐵𝐴))
3833, 37eqtrd 2172 . . . 4 ((¬ 𝐴 = 𝐵𝐵 ∈ (ℤ𝐴)) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴))
3938ex 114 . . 3 𝐴 = 𝐵 → (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴)))
4024, 39jaoi 705 . 2 ((𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵) → (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴)))
416, 40mpcom 36 1 (𝐵 ∈ (ℤ𝐴) → (♯‘((𝐴 + 1)...𝐵)) = (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819   = wceq 1331  wcel 1480  c0 3363   class class class wbr 3929  cfv 5123  (class class class)co 5774  0cc0 7620  1c1 7621   + caddc 7623   < clt 7800  cmin 7933  cz 9054  cuz 9326  ...cfz 9790  chash 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-1o 6313  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-ihash 10522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator