ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashgcdeq GIF version

Theorem hashgcdeq 11893
Description: Number of initial positive integers with specified divisors. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Assertion
Ref Expression
hashgcdeq ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁

Proof of Theorem hashgcdeq
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2147 . 2 ((ϕ‘(𝑀 / 𝑁)) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0) → ((♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = (ϕ‘(𝑀 / 𝑁)) ↔ (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0)))
2 eqeq2 2147 . 2 (0 = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0) → ((♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = 0 ↔ (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0)))
3 nndivdvds 11488 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑁𝑀 ↔ (𝑀 / 𝑁) ∈ ℕ))
43biimpa 294 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℕ)
5 dfphi2 11885 . . . 4 ((𝑀 / 𝑁) ∈ ℕ → (ϕ‘(𝑀 / 𝑁)) = (♯‘{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}))
64, 5syl 14 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (ϕ‘(𝑀 / 𝑁)) = (♯‘{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}))
7 0z 9058 . . . . . 6 0 ∈ ℤ
84nnzd 9165 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (𝑀 / 𝑁) ∈ ℤ)
9 fzofig 10198 . . . . . 6 ((0 ∈ ℤ ∧ (𝑀 / 𝑁) ∈ ℤ) → (0..^(𝑀 / 𝑁)) ∈ Fin)
107, 8, 9sylancr 410 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (0..^(𝑀 / 𝑁)) ∈ Fin)
11 elfzoelz 9917 . . . . . . . . . 10 (𝑦 ∈ (0..^(𝑀 / 𝑁)) → 𝑦 ∈ ℤ)
1211adantl 275 . . . . . . . . 9 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) ∧ 𝑦 ∈ (0..^(𝑀 / 𝑁))) → 𝑦 ∈ ℤ)
138adantr 274 . . . . . . . . 9 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) ∧ 𝑦 ∈ (0..^(𝑀 / 𝑁))) → (𝑀 / 𝑁) ∈ ℤ)
1412, 13gcdcld 11646 . . . . . . . 8 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) ∧ 𝑦 ∈ (0..^(𝑀 / 𝑁))) → (𝑦 gcd (𝑀 / 𝑁)) ∈ ℕ0)
1514nn0zd 9164 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) ∧ 𝑦 ∈ (0..^(𝑀 / 𝑁))) → (𝑦 gcd (𝑀 / 𝑁)) ∈ ℤ)
16 1zzd 9074 . . . . . . 7 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) ∧ 𝑦 ∈ (0..^(𝑀 / 𝑁))) → 1 ∈ ℤ)
17 zdceq 9119 . . . . . . 7 (((𝑦 gcd (𝑀 / 𝑁)) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝑦 gcd (𝑀 / 𝑁)) = 1)
1815, 16, 17syl2anc 408 . . . . . 6 ((((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) ∧ 𝑦 ∈ (0..^(𝑀 / 𝑁))) → DECID (𝑦 gcd (𝑀 / 𝑁)) = 1)
1918ralrimiva 2503 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → ∀𝑦 ∈ (0..^(𝑀 / 𝑁))DECID (𝑦 gcd (𝑀 / 𝑁)) = 1)
2010, 19ssfirab 6815 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ∈ Fin)
21 eqid 2137 . . . . . 6 {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} = {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}
22 eqid 2137 . . . . . 6 {𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁} = {𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}
23 eqid 2137 . . . . . 6 (𝑧 ∈ {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ↦ (𝑧 · 𝑁)) = (𝑧 ∈ {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ↦ (𝑧 · 𝑁))
2421, 22, 23hashgcdlem 11892 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑁𝑀) → (𝑧 ∈ {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ↦ (𝑧 · 𝑁)):{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}–1-1-onto→{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁})
25243expa 1181 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (𝑧 ∈ {𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1} ↦ (𝑧 · 𝑁)):{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}–1-1-onto→{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁})
2620, 25fihasheqf1od 10529 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (♯‘{𝑦 ∈ (0..^(𝑀 / 𝑁)) ∣ (𝑦 gcd (𝑀 / 𝑁)) = 1}) = (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}))
276, 26eqtr2d 2171 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑁𝑀) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = (ϕ‘(𝑀 / 𝑁)))
28 simprr 521 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → (𝑥 gcd 𝑀) = 𝑁)
29 elfzoelz 9917 . . . . . . . . . . . . 13 (𝑥 ∈ (0..^𝑀) → 𝑥 ∈ ℤ)
3029ad2antrl 481 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → 𝑥 ∈ ℤ)
31 nnz 9066 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
3231ad2antrr 479 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → 𝑀 ∈ ℤ)
33 gcddvds 11641 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑥 gcd 𝑀) ∥ 𝑥 ∧ (𝑥 gcd 𝑀) ∥ 𝑀))
3430, 32, 33syl2anc 408 . . . . . . . . . . 11 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → ((𝑥 gcd 𝑀) ∥ 𝑥 ∧ (𝑥 gcd 𝑀) ∥ 𝑀))
3534simprd 113 . . . . . . . . . 10 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → (𝑥 gcd 𝑀) ∥ 𝑀)
3628, 35eqbrtrrd 3947 . . . . . . . . 9 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (0..^𝑀) ∧ (𝑥 gcd 𝑀) = 𝑁)) → 𝑁𝑀)
3736expr 372 . . . . . . . 8 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (0..^𝑀)) → ((𝑥 gcd 𝑀) = 𝑁𝑁𝑀))
3837con3d 620 . . . . . . 7 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (0..^𝑀)) → (¬ 𝑁𝑀 → ¬ (𝑥 gcd 𝑀) = 𝑁))
3938impancom 258 . . . . . 6 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → (𝑥 ∈ (0..^𝑀) → ¬ (𝑥 gcd 𝑀) = 𝑁))
4039ralrimiv 2502 . . . . 5 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → ∀𝑥 ∈ (0..^𝑀) ¬ (𝑥 gcd 𝑀) = 𝑁)
41 rabeq0 3387 . . . . 5 ({𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁} = ∅ ↔ ∀𝑥 ∈ (0..^𝑀) ¬ (𝑥 gcd 𝑀) = 𝑁)
4240, 41sylibr 133 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → {𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁} = ∅)
4342fveq2d 5418 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = (♯‘∅))
44 hash0 10536 . . 3 (♯‘∅) = 0
4543, 44syl6eq 2186 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ¬ 𝑁𝑀) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = 0)
46 dvdsdc 11490 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℤ) → DECID 𝑁𝑀)
4731, 46sylan2 284 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → DECID 𝑁𝑀)
4847ancoms 266 . 2 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → DECID 𝑁𝑀)
491, 2, 27, 45, 48ifbothdadc 3498 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ (0..^𝑀) ∣ (𝑥 gcd 𝑀) = 𝑁}) = if(𝑁𝑀, (ϕ‘(𝑀 / 𝑁)), 0))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  DECID wdc 819   = wceq 1331  wcel 1480  wral 2414  {crab 2418  c0 3358  ifcif 3469   class class class wbr 3924  cmpt 3984  1-1-ontowf1o 5117  cfv 5118  (class class class)co 5767  Fincfn 6627  0cc0 7613  1c1 7614   · cmul 7618   / cdiv 8425  cn 8713  cz 9047  ..^cfzo 9912  chash 10514  cdvds 11482   gcd cgcd 11624  ϕcphi 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-1o 6306  df-er 6422  df-en 6628  df-dom 6629  df-fin 6630  df-sup 6864  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-fl 10036  df-mod 10089  df-seqfrec 10212  df-exp 10286  df-ihash 10515  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-dvds 11483  df-gcd 11625  df-phi 11876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator