ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashinfom GIF version

Theorem hashinfom 10524
Description: The value of the function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
hashinfom (ω ≼ 𝐴 → (♯‘𝐴) = +∞)

Proof of Theorem hashinfom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ihash 10522 . . . . 5 ♯ = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
21fveq1i 5422 . . . 4 (♯‘𝐴) = (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴)
3 funmpt 5161 . . . . 5 Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
4 funrel 5140 . . . . . . 7 (Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) → Rel (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
53, 4ax-mp 5 . . . . . 6 Rel (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
6 peano1 4508 . . . . . . 7 ∅ ∈ ω
7 reldom 6639 . . . . . . . . . 10 Rel ≼
87brrelex2i 4583 . . . . . . . . 9 (ω ≼ 𝐴𝐴 ∈ V)
9 hashinfuni 10523 . . . . . . . . . 10 (ω ≼ 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} = ω)
10 omex 4507 . . . . . . . . . 10 ω ∈ V
119, 10eqeltrdi 2230 . . . . . . . . 9 (ω ≼ 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∈ V)
12 breq2 3933 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
1312rabbidv 2675 . . . . . . . . . . 11 (𝑥 = 𝐴 → {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
1413unieqd 3747 . . . . . . . . . 10 (𝑥 = 𝐴 {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥} = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
15 eqid 2139 . . . . . . . . . 10 (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) = (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})
1614, 15fvmptg 5497 . . . . . . . . 9 ((𝐴 ∈ V ∧ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴} ∈ V) → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
178, 11, 16syl2anc 408 . . . . . . . 8 (ω ≼ 𝐴 → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝐴})
1817, 9eqtrd 2172 . . . . . . 7 (ω ≼ 𝐴 → ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴) = ω)
196, 18eleqtrrid 2229 . . . . . 6 (ω ≼ 𝐴 → ∅ ∈ ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴))
20 relelfvdm 5453 . . . . . 6 ((Rel (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) ∧ ∅ ∈ ((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)) → 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
215, 19, 20sylancr 410 . . . . 5 (ω ≼ 𝐴𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))
22 fvco 5491 . . . . 5 ((Fun (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}) ∧ 𝐴 ∈ dom (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})) → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
233, 21, 22sylancr 410 . . . 4 (ω ≼ 𝐴 → (((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩}) ∘ (𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥}))‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
242, 23syl5eq 2184 . . 3 (ω ≼ 𝐴 → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)))
2518fveq2d 5425 . . 3 (ω ≼ 𝐴 → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘((𝑥 ∈ V ↦ {𝑦 ∈ (ω ∪ {ω}) ∣ 𝑦𝑥})‘𝐴)) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω))
2624, 25eqtrd 2172 . 2 (ω ≼ 𝐴 → (♯‘𝐴) = ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω))
27 pnfxr 7818 . . 3 +∞ ∈ ℝ*
28 ordom 4520 . . . . 5 Ord ω
29 ordirr 4457 . . . . 5 (Ord ω → ¬ ω ∈ ω)
3028, 29ax-mp 5 . . . 4 ¬ ω ∈ ω
31 zex 9063 . . . . . . . . . 10 ℤ ∈ V
3231mptex 5646 . . . . . . . . 9 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) ∈ V
33 vex 2689 . . . . . . . . 9 𝑧 ∈ V
3432, 33fvex 5441 . . . . . . . 8 ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
3534ax-gen 1425 . . . . . . 7 𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V
36 0z 9065 . . . . . . 7 0 ∈ ℤ
37 frecfnom 6298 . . . . . . 7 ((∀𝑧((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑧) ∈ V ∧ 0 ∈ ℤ) → frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω)
3835, 36, 37mp2an 422 . . . . . 6 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω
39 fndm 5222 . . . . . 6 (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) Fn ω → dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = ω)
4038, 39ax-mp 5 . . . . 5 dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = ω
4140eleq2i 2206 . . . 4 (ω ∈ dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ↔ ω ∈ ω)
4230, 41mtbir 660 . . 3 ¬ ω ∈ dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
43 fsnunfv 5621 . . 3 ((ω ∈ V ∧ +∞ ∈ ℝ* ∧ ¬ ω ∈ dom frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)) → ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω) = +∞)
4410, 27, 42, 43mp3an 1315 . 2 ((frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) ∪ {⟨ω, +∞⟩})‘ω) = +∞
4526, 44syl6eq 2188 1 (ω ≼ 𝐴 → (♯‘𝐴) = +∞)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1329   = wceq 1331  wcel 1480  {crab 2420  Vcvv 2686  cun 3069  c0 3363  {csn 3527  cop 3530   cuni 3736   class class class wbr 3929  cmpt 3989  Ord word 4284  ωcom 4504  dom cdm 4539  ccom 4543  Rel wrel 4544  Fun wfun 5117   Fn wfn 5118  cfv 5123  (class class class)co 5774  freccfrec 6287  cdom 6633  0cc0 7620  1c1 7621   + caddc 7623  +∞cpnf 7797  *cxr 7799  cz 9054  chash 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1re 7714  ax-addrcl 7717  ax-rnegex 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-recs 6202  df-frec 6288  df-dom 6636  df-pnf 7802  df-xr 7804  df-neg 7936  df-z 9055  df-ihash 10522
This theorem is referenced by:  filtinf  10538
  Copyright terms: Public domain W3C validator