ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashsng GIF version

Theorem hashsng 10544
Description: The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.)
Assertion
Ref Expression
hashsng (𝐴𝑉 → (♯‘{𝐴}) = 1)

Proof of Theorem hashsng
StepHypRef Expression
1 1z 9080 . . . 4 1 ∈ ℤ
2 en2sn 6707 . . . 4 ((𝐴𝑉 ∧ 1 ∈ ℤ) → {𝐴} ≈ {1})
31, 2mpan2 421 . . 3 (𝐴𝑉 → {𝐴} ≈ {1})
4 snfig 6708 . . . 4 (𝐴𝑉 → {𝐴} ∈ Fin)
5 snfig 6708 . . . . 5 (1 ∈ ℤ → {1} ∈ Fin)
61, 5ax-mp 5 . . . 4 {1} ∈ Fin
7 hashen 10530 . . . 4 (({𝐴} ∈ Fin ∧ {1} ∈ Fin) → ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1}))
84, 6, 7sylancl 409 . . 3 (𝐴𝑉 → ((♯‘{𝐴}) = (♯‘{1}) ↔ {𝐴} ≈ {1}))
93, 8mpbird 166 . 2 (𝐴𝑉 → (♯‘{𝐴}) = (♯‘{1}))
10 1nn0 8993 . . . . 5 1 ∈ ℕ0
11 hashfz1 10529 . . . . 5 (1 ∈ ℕ0 → (♯‘(1...1)) = 1)
1210, 11ax-mp 5 . . . 4 (♯‘(1...1)) = 1
13 fzsn 9846 . . . . 5 (1 ∈ ℤ → (1...1) = {1})
1413fveq2d 5425 . . . 4 (1 ∈ ℤ → (♯‘(1...1)) = (♯‘{1}))
1512, 14syl5reqr 2187 . . 3 (1 ∈ ℤ → (♯‘{1}) = 1)
161, 15ax-mp 5 . 2 (♯‘{1}) = 1
179, 16syl6eq 2188 1 (𝐴𝑉 → (♯‘{𝐴}) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1331  wcel 1480  {csn 3527   class class class wbr 3929  cfv 5123  (class class class)co 5774  cen 6632  Fincfn 6634  1c1 7621  0cn0 8977  cz 9054  ...cfz 9790  chash 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-recs 6202  df-frec 6288  df-1o 6313  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-ihash 10522
This theorem is referenced by:  fihashen1  10545  hashunsng  10553  hashprg  10554  hashdifsn  10565  fsumconst  11223  phicl2  11890  dfphi2  11896
  Copyright terms: Public domain W3C validator