ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbia1 GIF version

Theorem hbia1 1485
Description: Lemma 23 of [Monk2] p. 114. (Contributed by NM, 29-May-2008.)
Assertion
Ref Expression
hbia1 ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem hbia1
StepHypRef Expression
1 hba1 1474 . 2 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
2 hba1 1474 . 2 (∀𝑥𝜓 → ∀𝑥𝑥𝜓)
31, 2hbim 1478 1 ((∀𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∀𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1283
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-5 1377  ax-gen 1379  ax-4 1441  ax-ial 1468  ax-i5r 1469
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator