ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsb2e GIF version

Theorem hbsb2e 1729
Description: Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.)
Assertion
Ref Expression
hbsb2e ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑)

Proof of Theorem hbsb2e
StepHypRef Expression
1 sb4e 1727 . 2 ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
2 sb2 1691 . . 3 (∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑) → [𝑦 / 𝑥]∃𝑦𝜑)
32a5i 1476 . 2 (∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑) → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑)
41, 3syl 14 1 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1283  wex 1422  [wsb 1686
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-11 1438  ax-4 1441  ax-i9 1464  ax-ial 1468
This theorem depends on definitions:  df-bi 115  df-sb 1687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator