ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsbd GIF version

Theorem hbsbd 1874
Description: Deduction version of hbsb 1839. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
Hypotheses
Ref Expression
hbsbd.1 (𝜑 → ∀𝑥𝜑)
hbsbd.2 (𝜑 → ∀𝑧𝜑)
hbsbd.3 (𝜑 → (𝜓 → ∀𝑧𝜓))
Assertion
Ref Expression
hbsbd (𝜑 → ([𝑦 / 𝑥]𝜓 → ∀𝑧[𝑦 / 𝑥]𝜓))
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem hbsbd
StepHypRef Expression
1 hbsbd.2 . . . 4 (𝜑 → ∀𝑧𝜑)
21nfi 1367 . . 3 𝑧𝜑
3 hbsbd.3 . . . . . . 7 (𝜑 → (𝜓 → ∀𝑧𝜓))
41, 3nfdh 1433 . . . . . 6 (𝜑 → Ⅎ𝑧𝜓)
52, 4nfim1 1479 . . . . 5 𝑧(𝜑𝜓)
65nfsb 1838 . . . 4 𝑧[𝑦 / 𝑥](𝜑𝜓)
7 hbsbd.1 . . . . . 6 (𝜑 → ∀𝑥𝜑)
87sbrim 1846 . . . . 5 ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
98nfbii 1378 . . . 4 (Ⅎ𝑧[𝑦 / 𝑥](𝜑𝜓) ↔ Ⅎ𝑧(𝜑 → [𝑦 / 𝑥]𝜓))
106, 9mpbi 137 . . 3 𝑧(𝜑 → [𝑦 / 𝑥]𝜓)
112, 10nfrimi 1434 . 2 (𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜓)
1211nfrd 1429 1 (𝜑 → ([𝑦 / 𝑥]𝜓 → ∀𝑧[𝑦 / 𝑥]𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1257  wnf 1365  [wsb 1661
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444
This theorem depends on definitions:  df-bi 114  df-nf 1366  df-sb 1662
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator