ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ialgfx GIF version

Theorem ialgfx 10274
Description: If 𝐹 reaches a fixed point when the countdown function 𝐶 reaches 0, 𝐹 remains fixed after 𝑁 steps. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvga.1 𝐹:𝑆𝑆
algcvga.2 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}), 𝑆)
algcvga.3 𝐶:𝑆⟶ℕ0
algcvga.4 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
algcvga.5 𝑁 = (𝐶𝐴)
ialgcvga.s 𝑆𝑉
algfx.6 (𝑧𝑆 → ((𝐶𝑧) = 0 → (𝐹𝑧) = 𝑧))
Assertion
Ref Expression
ialgfx (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝑅𝐾) = (𝑅𝑁)))
Distinct variable groups:   𝑧,𝐶   𝑧,𝐹   𝑧,𝑅   𝑧,𝑆   𝑧,𝐾   𝑧,𝑁
Allowed substitution hints:   𝐴(𝑧)   𝑉(𝑧)

Proof of Theorem ialgfx
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algcvga.5 . . . 4 𝑁 = (𝐶𝐴)
2 algcvga.3 . . . . 5 𝐶:𝑆⟶ℕ0
32ffvelrni 5329 . . . 4 (𝐴𝑆 → (𝐶𝐴) ∈ ℕ0)
41, 3syl5eqel 2140 . . 3 (𝐴𝑆𝑁 ∈ ℕ0)
54nn0zd 8417 . 2 (𝐴𝑆𝑁 ∈ ℤ)
6 uzval 8571 . . . . . . 7 (𝑁 ∈ ℤ → (ℤ𝑁) = {𝑧 ∈ ℤ ∣ 𝑁𝑧})
76eleq2d 2123 . . . . . 6 (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) ↔ 𝐾 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
87pm5.32i 435 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (ℤ𝑁)) ↔ (𝑁 ∈ ℤ ∧ 𝐾 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
9 fveq2 5206 . . . . . . . 8 (𝑚 = 𝑁 → (𝑅𝑚) = (𝑅𝑁))
109eqeq1d 2064 . . . . . . 7 (𝑚 = 𝑁 → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅𝑁) = (𝑅𝑁)))
1110imbi2d 223 . . . . . 6 (𝑚 = 𝑁 → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅𝑁) = (𝑅𝑁))))
12 fveq2 5206 . . . . . . . 8 (𝑚 = 𝑘 → (𝑅𝑚) = (𝑅𝑘))
1312eqeq1d 2064 . . . . . . 7 (𝑚 = 𝑘 → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅𝑘) = (𝑅𝑁)))
1413imbi2d 223 . . . . . 6 (𝑚 = 𝑘 → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅𝑘) = (𝑅𝑁))))
15 fveq2 5206 . . . . . . . 8 (𝑚 = (𝑘 + 1) → (𝑅𝑚) = (𝑅‘(𝑘 + 1)))
1615eqeq1d 2064 . . . . . . 7 (𝑚 = (𝑘 + 1) → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅‘(𝑘 + 1)) = (𝑅𝑁)))
1716imbi2d 223 . . . . . 6 (𝑚 = (𝑘 + 1) → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
18 fveq2 5206 . . . . . . . 8 (𝑚 = 𝐾 → (𝑅𝑚) = (𝑅𝐾))
1918eqeq1d 2064 . . . . . . 7 (𝑚 = 𝐾 → ((𝑅𝑚) = (𝑅𝑁) ↔ (𝑅𝐾) = (𝑅𝑁)))
2019imbi2d 223 . . . . . 6 (𝑚 = 𝐾 → ((𝐴𝑆 → (𝑅𝑚) = (𝑅𝑁)) ↔ (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁))))
21 eqidd 2057 . . . . . . 7 (𝐴𝑆 → (𝑅𝑁) = (𝑅𝑁))
2221a1i 9 . . . . . 6 (𝑁 ∈ ℤ → (𝐴𝑆 → (𝑅𝑁) = (𝑅𝑁)))
236eleq2d 2123 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑘 ∈ (ℤ𝑁) ↔ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
2423pm5.32i 435 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑁)) ↔ (𝑁 ∈ ℤ ∧ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
25 eluznn0 8633 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
264, 25sylan 271 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ ℕ0)
27 nn0uz 8603 . . . . . . . . . . . . . . 15 0 = (ℤ‘0)
28 algcvga.2 . . . . . . . . . . . . . . 15 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}), 𝑆)
29 0zd 8314 . . . . . . . . . . . . . . 15 (𝐴𝑆 → 0 ∈ ℤ)
30 id 19 . . . . . . . . . . . . . . 15 (𝐴𝑆𝐴𝑆)
31 algcvga.1 . . . . . . . . . . . . . . . 16 𝐹:𝑆𝑆
3231a1i 9 . . . . . . . . . . . . . . 15 (𝐴𝑆𝐹:𝑆𝑆)
33 ialgcvga.s . . . . . . . . . . . . . . . 16 𝑆𝑉
3433a1i 9 . . . . . . . . . . . . . . 15 (𝐴𝑆𝑆𝑉)
3527, 28, 29, 30, 32, 34ialgrp1 10268 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
3626, 35syldan 270 . . . . . . . . . . . . 13 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
3727, 28, 29, 30, 32, 34ialgrf 10267 . . . . . . . . . . . . . . . 16 (𝐴𝑆𝑅:ℕ0𝑆)
3837ffvelrnda 5330 . . . . . . . . . . . . . . 15 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ 𝑆)
3926, 38syldan 270 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝑅𝑘) ∈ 𝑆)
40 algcvga.4 . . . . . . . . . . . . . . . 16 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
4131, 28, 2, 40, 1, 33ialgcvga 10273 . . . . . . . . . . . . . . 15 (𝐴𝑆 → (𝑘 ∈ (ℤ𝑁) → (𝐶‘(𝑅𝑘)) = 0))
4241imp 119 . . . . . . . . . . . . . 14 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝐶‘(𝑅𝑘)) = 0)
43 fveq2 5206 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑅𝑘) → (𝐶𝑧) = (𝐶‘(𝑅𝑘)))
4443eqeq1d 2064 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑅𝑘) → ((𝐶𝑧) = 0 ↔ (𝐶‘(𝑅𝑘)) = 0))
45 fveq2 5206 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑅𝑘) → (𝐹𝑧) = (𝐹‘(𝑅𝑘)))
46 id 19 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑅𝑘) → 𝑧 = (𝑅𝑘))
4745, 46eqeq12d 2070 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑅𝑘) → ((𝐹𝑧) = 𝑧 ↔ (𝐹‘(𝑅𝑘)) = (𝑅𝑘)))
4844, 47imbi12d 227 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅𝑘) → (((𝐶𝑧) = 0 → (𝐹𝑧) = 𝑧) ↔ ((𝐶‘(𝑅𝑘)) = 0 → (𝐹‘(𝑅𝑘)) = (𝑅𝑘))))
49 algfx.6 . . . . . . . . . . . . . . 15 (𝑧𝑆 → ((𝐶𝑧) = 0 → (𝐹𝑧) = 𝑧))
5048, 49vtoclga 2636 . . . . . . . . . . . . . 14 ((𝑅𝑘) ∈ 𝑆 → ((𝐶‘(𝑅𝑘)) = 0 → (𝐹‘(𝑅𝑘)) = (𝑅𝑘)))
5139, 42, 50sylc 60 . . . . . . . . . . . . 13 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝐹‘(𝑅𝑘)) = (𝑅𝑘))
5236, 51eqtrd 2088 . . . . . . . . . . . 12 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → (𝑅‘(𝑘 + 1)) = (𝑅𝑘))
5352eqeq1d 2064 . . . . . . . . . . 11 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → ((𝑅‘(𝑘 + 1)) = (𝑅𝑁) ↔ (𝑅𝑘) = (𝑅𝑁)))
5453biimprd 151 . . . . . . . . . 10 ((𝐴𝑆𝑘 ∈ (ℤ𝑁)) → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁)))
5554expcom 113 . . . . . . . . 9 (𝑘 ∈ (ℤ𝑁) → (𝐴𝑆 → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
5655adantl 266 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ (ℤ𝑁)) → (𝐴𝑆 → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
5724, 56sylbir 129 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → (𝐴𝑆 → ((𝑅𝑘) = (𝑅𝑁) → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
5857a2d 26 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → ((𝐴𝑆 → (𝑅𝑘) = (𝑅𝑁)) → (𝐴𝑆 → (𝑅‘(𝑘 + 1)) = (𝑅𝑁))))
5911, 14, 17, 20, 22, 58uzind3 8410 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁)))
608, 59sylbi 118 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ (ℤ𝑁)) → (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁)))
6160ex 112 . . 3 (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) → (𝐴𝑆 → (𝑅𝐾) = (𝑅𝑁))))
6261com3r 77 . 2 (𝐴𝑆 → (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) → (𝑅𝐾) = (𝑅𝑁))))
635, 62mpd 13 1 (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝑅𝐾) = (𝑅𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wcel 1409  wne 2220  {crab 2327  {csn 3403   class class class wbr 3792   × cxp 4371  ccom 4377  wf 4926  cfv 4930  (class class class)co 5540  1st c1st 5793  0cc0 6947  1c1 6948   + caddc 6950   < clt 7119  cle 7120  0cn0 8239  cz 8302  cuz 8569  seqcseq 9375
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-apti 7057  ax-pre-ltadd 7058
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-frec 6009  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-inn 7991  df-n0 8240  df-z 8303  df-uz 8570  df-iseq 9376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator