![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ialgrlemconst | GIF version |
Description: Lemma for ialgr0 10651. Closure of a constant function, in a form suitable for theorems such as iseq1 9603 or iseqfcl 9605. (Contributed by Jim Kingdon, 22-Jul-2021.) |
Ref | Expression |
---|---|
ialgrlemconst.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
ialgrlemconst.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
Ref | Expression |
---|---|
ialgrlemconst | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ialgrlemconst.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
2 | ialgrlemconst.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | 2 | eleq2i 2149 | . . . 4 ⊢ (𝑥 ∈ 𝑍 ↔ 𝑥 ∈ (ℤ≥‘𝑀)) |
4 | 3 | biimpri 131 | . . 3 ⊢ (𝑥 ∈ (ℤ≥‘𝑀) → 𝑥 ∈ 𝑍) |
5 | fvconst2g 5428 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑥 ∈ 𝑍) → ((𝑍 × {𝐴})‘𝑥) = 𝐴) | |
6 | 1, 4, 5 | syl2an 283 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {𝐴})‘𝑥) = 𝐴) |
7 | 1 | adantr 270 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → 𝐴 ∈ 𝑆) |
8 | 6, 7 | eqeltrd 2159 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 ∈ wcel 1434 {csn 3416 × cxp 4389 ‘cfv 4952 ℤ≥cuz 8770 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2612 df-sbc 2825 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-br 3806 df-opab 3860 df-mpt 3861 df-id 4076 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-fv 4960 |
This theorem is referenced by: ialgr0 10651 ialgrf 10652 ialgrp1 10653 |
Copyright terms: Public domain | W3C validator |