![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iccdili | GIF version |
Description: Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
iccdili.1 | ⊢ 𝐴 ∈ ℝ |
iccdili.2 | ⊢ 𝐵 ∈ ℝ |
iccdili.3 | ⊢ 𝑅 ∈ ℝ+ |
iccdili.4 | ⊢ (𝐴 · 𝑅) = 𝐶 |
iccdili.5 | ⊢ (𝐵 · 𝑅) = 𝐷 |
Ref | Expression |
---|---|
iccdili | ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 · 𝑅) ∈ (𝐶[,]𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccdili.1 | . . . 4 ⊢ 𝐴 ∈ ℝ | |
2 | iccdili.2 | . . . 4 ⊢ 𝐵 ∈ ℝ | |
3 | iccssre 9131 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
4 | 1, 2, 3 | mp2an 417 | . . 3 ⊢ (𝐴[,]𝐵) ⊆ ℝ |
5 | 4 | sseli 3005 | . 2 ⊢ (𝑋 ∈ (𝐴[,]𝐵) → 𝑋 ∈ ℝ) |
6 | iccdili.3 | . . . 4 ⊢ 𝑅 ∈ ℝ+ | |
7 | iccdili.4 | . . . . . 6 ⊢ (𝐴 · 𝑅) = 𝐶 | |
8 | iccdili.5 | . . . . . 6 ⊢ (𝐵 · 𝑅) = 𝐷 | |
9 | 7, 8 | iccdil 9173 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+)) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷))) |
10 | 1, 2, 9 | mpanl12 427 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ 𝑅 ∈ ℝ+) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷))) |
11 | 6, 10 | mpan2 416 | . . 3 ⊢ (𝑋 ∈ ℝ → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 · 𝑅) ∈ (𝐶[,]𝐷))) |
12 | 11 | biimpd 142 | . 2 ⊢ (𝑋 ∈ ℝ → (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 · 𝑅) ∈ (𝐶[,]𝐷))) |
13 | 5, 12 | mpcom 36 | 1 ⊢ (𝑋 ∈ (𝐴[,]𝐵) → (𝑋 · 𝑅) ∈ (𝐶[,]𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1285 ∈ wcel 1434 ⊆ wss 2983 (class class class)co 5565 ℝcr 7119 · cmul 7125 ℝ+crp 8892 [,]cicc 9067 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3917 ax-pow 3969 ax-pr 3993 ax-un 4217 ax-setind 4309 ax-cnex 7206 ax-resscn 7207 ax-1cn 7208 ax-1re 7209 ax-icn 7210 ax-addcl 7211 ax-addrcl 7212 ax-mulcl 7213 ax-mulrcl 7214 ax-addcom 7215 ax-mulcom 7216 ax-addass 7217 ax-mulass 7218 ax-distr 7219 ax-i2m1 7220 ax-1rid 7222 ax-0id 7223 ax-rnegex 7224 ax-precex 7225 ax-cnre 7226 ax-pre-ltirr 7227 ax-pre-ltwlin 7228 ax-pre-lttrn 7229 ax-pre-ltadd 7231 ax-pre-mulgt0 7232 |
This theorem depends on definitions: df-bi 115 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2613 df-sbc 2826 df-dif 2985 df-un 2987 df-in 2989 df-ss 2996 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-br 3807 df-opab 3861 df-id 4077 df-po 4080 df-iso 4081 df-xp 4398 df-rel 4399 df-cnv 4400 df-co 4401 df-dm 4402 df-iota 4918 df-fun 4955 df-fv 4961 df-riota 5521 df-ov 5568 df-oprab 5569 df-mpt2 5570 df-pnf 7294 df-mnf 7295 df-xr 7296 df-ltxr 7297 df-le 7298 df-sub 7425 df-neg 7426 df-rp 8893 df-icc 9071 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |