ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccmax GIF version

Theorem iccmax 9048
Description: The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014.)
Assertion
Ref Expression
iccmax (-∞[,]+∞) = ℝ*

Proof of Theorem iccmax
StepHypRef Expression
1 mnfxr 7237 . . 3 -∞ ∈ ℝ*
2 pnfxr 7233 . . 3 +∞ ∈ ℝ*
3 iccval 9019 . . 3 ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞[,]+∞) = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥𝑥 ≤ +∞)})
41, 2, 3mp2an 417 . 2 (-∞[,]+∞) = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥𝑥 ≤ +∞)}
5 rabid2 2531 . . 3 (ℝ* = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥𝑥 ≤ +∞)} ↔ ∀𝑥 ∈ ℝ* (-∞ ≤ 𝑥𝑥 ≤ +∞))
6 mnfle 8943 . . . 4 (𝑥 ∈ ℝ* → -∞ ≤ 𝑥)
7 pnfge 8940 . . . 4 (𝑥 ∈ ℝ*𝑥 ≤ +∞)
86, 7jca 300 . . 3 (𝑥 ∈ ℝ* → (-∞ ≤ 𝑥𝑥 ≤ +∞))
95, 8mprgbir 2422 . 2 * = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥𝑥 ≤ +∞)}
104, 9eqtr4i 2105 1 (-∞[,]+∞) = ℝ*
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1285  wcel 1434  {crab 2353   class class class wbr 3793  (class class class)co 5543  +∞cpnf 7212  -∞cmnf 7213  *cxr 7214  cle 7216  [,]cicc 8990
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-icc 8994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator