ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccsupr GIF version

Theorem iccsupr 9742
Description: A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum. To be useful without excluded middle, we'll probably need to change not equal to apart, and perhaps make other changes, but the theorem does hold as stated here. (Contributed by Paul Chapman, 21-Jan-2008.)
Assertion
Ref Expression
iccsupr (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem iccsupr
StepHypRef Expression
1 iccssre 9731 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
2 sstr 3100 . . . . 5 ((𝑆 ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ⊆ ℝ) → 𝑆 ⊆ ℝ)
32ancoms 266 . . . 4 (((𝐴[,]𝐵) ⊆ ℝ ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → 𝑆 ⊆ ℝ)
41, 3sylan 281 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → 𝑆 ⊆ ℝ)
543adant3 1001 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → 𝑆 ⊆ ℝ)
6 ne0i 3364 . . 3 (𝐶𝑆𝑆 ≠ ∅)
763ad2ant3 1004 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → 𝑆 ≠ ∅)
8 simplr 519 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
9 ssel 3086 . . . . . . . 8 (𝑆 ⊆ (𝐴[,]𝐵) → (𝑦𝑆𝑦 ∈ (𝐴[,]𝐵)))
10 elicc2 9714 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
1110biimpd 143 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
129, 11sylan9r 407 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → (𝑦𝑆 → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
1312imp 123 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) ∧ 𝑦𝑆) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
1413simp3d 995 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) ∧ 𝑦𝑆) → 𝑦𝐵)
1514ralrimiva 2503 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → ∀𝑦𝑆 𝑦𝐵)
16 breq2 3928 . . . . . 6 (𝑥 = 𝐵 → (𝑦𝑥𝑦𝐵))
1716ralbidv 2435 . . . . 5 (𝑥 = 𝐵 → (∀𝑦𝑆 𝑦𝑥 ↔ ∀𝑦𝑆 𝑦𝐵))
1817rspcev 2784 . . . 4 ((𝐵 ∈ ℝ ∧ ∀𝑦𝑆 𝑦𝐵) → ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥)
198, 15, 18syl2anc 408 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵)) → ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥)
20193adant3 1001 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥)
215, 7, 203jca 1161 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑆 ⊆ (𝐴[,]𝐵) ∧ 𝐶𝑆) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑆 𝑦𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  wne 2306  wral 2414  wrex 2415  wss 3066  c0 3358   class class class wbr 3924  (class class class)co 5767  cr 7612  cle 7794  [,]cicc 9667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-icc 9671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator