ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iexpcyc GIF version

Theorem iexpcyc 9676
Description: Taking i to the 𝐾-th power is the same as using the 𝐾 mod 4 -th power instead, by i4 9674. (Contributed by Mario Carneiro, 7-Jul-2014.)
Assertion
Ref Expression
iexpcyc (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾))

Proof of Theorem iexpcyc
StepHypRef Expression
1 zq 8792 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℚ)
2 4z 8462 . . . . . 6 4 ∈ ℤ
3 zq 8792 . . . . . 6 (4 ∈ ℤ → 4 ∈ ℚ)
42, 3ax-mp 7 . . . . 5 4 ∈ ℚ
5 4pos 8203 . . . . 5 0 < 4
6 modqval 9406 . . . . 5 ((𝐾 ∈ ℚ ∧ 4 ∈ ℚ ∧ 0 < 4) → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4)))))
74, 5, 6mp3an23 1261 . . . 4 (𝐾 ∈ ℚ → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4)))))
81, 7syl 14 . . 3 (𝐾 ∈ ℤ → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4)))))
98oveq2d 5559 . 2 (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))))
10 4nn 8262 . . . . . . 7 4 ∈ ℕ
11 znq 8790 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 4 ∈ ℕ) → (𝐾 / 4) ∈ ℚ)
1210, 11mpan2 416 . . . . . 6 (𝐾 ∈ ℤ → (𝐾 / 4) ∈ ℚ)
1312flqcld 9359 . . . . 5 (𝐾 ∈ ℤ → (⌊‘(𝐾 / 4)) ∈ ℤ)
14 zmulcl 8485 . . . . 5 ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)
152, 13, 14sylancr 405 . . . 4 (𝐾 ∈ ℤ → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)
16 ax-icn 7133 . . . . 5 i ∈ ℂ
17 iap0 8321 . . . . 5 i # 0
18 expsubap 9621 . . . . 5 (((i ∈ ℂ ∧ i # 0) ∧ (𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))))
1916, 17, 18mpanl12 427 . . . 4 ((𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))))
2015, 19mpdan 412 . . 3 (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))))
21 expmulzap 9619 . . . . . . . 8 (((i ∈ ℂ ∧ i # 0) ∧ (4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ)) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4))))
2216, 17, 21mpanl12 427 . . . . . . 7 ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4))))
232, 13, 22sylancr 405 . . . . . 6 (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4))))
24 i4 9674 . . . . . . . 8 (i↑4) = 1
2524oveq1i 5553 . . . . . . 7 ((i↑4)↑(⌊‘(𝐾 / 4))) = (1↑(⌊‘(𝐾 / 4)))
26 1exp 9602 . . . . . . . 8 ((⌊‘(𝐾 / 4)) ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1)
2713, 26syl 14 . . . . . . 7 (𝐾 ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1)
2825, 27syl5eq 2126 . . . . . 6 (𝐾 ∈ ℤ → ((i↑4)↑(⌊‘(𝐾 / 4))) = 1)
2923, 28eqtrd 2114 . . . . 5 (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = 1)
3029oveq2d 5559 . . . 4 (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / 1))
31 expclzap 9598 . . . . . 6 ((i ∈ ℂ ∧ i # 0 ∧ 𝐾 ∈ ℤ) → (i↑𝐾) ∈ ℂ)
3216, 17, 31mp3an12 1259 . . . . 5 (𝐾 ∈ ℤ → (i↑𝐾) ∈ ℂ)
3332div1d 7935 . . . 4 (𝐾 ∈ ℤ → ((i↑𝐾) / 1) = (i↑𝐾))
3430, 33eqtrd 2114 . . 3 (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾))
3520, 34eqtrd 2114 . 2 (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾))
369, 35eqtrd 2114 1 (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434   class class class wbr 3793  cfv 4932  (class class class)co 5543  cc 7041  0cc0 7043  1c1 7044  ici 7045   · cmul 7048   < clt 7215  cmin 7346   # cap 7748   / cdiv 7827  cn 8106  4c4 8158  cz 8432  cq 8785  cfl 9350   mod cmo 9404  cexp 9572
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156  ax-arch 7157
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-if 3360  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-ilim 4132  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-frec 6040  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-inn 8107  df-2 8165  df-3 8166  df-4 8167  df-n0 8356  df-z 8433  df-uz 8701  df-q 8786  df-rp 8816  df-fl 9352  df-mod 9405  df-iseq 9522  df-iexp 9573
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator