![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iexpcyc | GIF version |
Description: Taking i to the 𝐾-th power is the same as using the 𝐾 mod 4 -th power instead, by i4 9674. (Contributed by Mario Carneiro, 7-Jul-2014.) |
Ref | Expression |
---|---|
iexpcyc | ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zq 8792 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℚ) | |
2 | 4z 8462 | . . . . . 6 ⊢ 4 ∈ ℤ | |
3 | zq 8792 | . . . . . 6 ⊢ (4 ∈ ℤ → 4 ∈ ℚ) | |
4 | 2, 3 | ax-mp 7 | . . . . 5 ⊢ 4 ∈ ℚ |
5 | 4pos 8203 | . . . . 5 ⊢ 0 < 4 | |
6 | modqval 9406 | . . . . 5 ⊢ ((𝐾 ∈ ℚ ∧ 4 ∈ ℚ ∧ 0 < 4) → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4))))) | |
7 | 4, 5, 6 | mp3an23 1261 | . . . 4 ⊢ (𝐾 ∈ ℚ → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4))))) |
8 | 1, 7 | syl 14 | . . 3 ⊢ (𝐾 ∈ ℤ → (𝐾 mod 4) = (𝐾 − (4 · (⌊‘(𝐾 / 4))))) |
9 | 8 | oveq2d 5559 | . 2 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4)))))) |
10 | 4nn 8262 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
11 | znq 8790 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 4 ∈ ℕ) → (𝐾 / 4) ∈ ℚ) | |
12 | 10, 11 | mpan2 416 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → (𝐾 / 4) ∈ ℚ) |
13 | 12 | flqcld 9359 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (⌊‘(𝐾 / 4)) ∈ ℤ) |
14 | zmulcl 8485 | . . . . 5 ⊢ ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) | |
15 | 2, 13, 14 | sylancr 405 | . . . 4 ⊢ (𝐾 ∈ ℤ → (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) |
16 | ax-icn 7133 | . . . . 5 ⊢ i ∈ ℂ | |
17 | iap0 8321 | . . . . 5 ⊢ i # 0 | |
18 | expsubap 9621 | . . . . 5 ⊢ (((i ∈ ℂ ∧ i # 0) ∧ (𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ)) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4)))))) | |
19 | 16, 17, 18 | mpanl12 427 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ (4 · (⌊‘(𝐾 / 4))) ∈ ℤ) → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4)))))) |
20 | 15, 19 | mpdan 412 | . . 3 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4)))))) |
21 | expmulzap 9619 | . . . . . . . 8 ⊢ (((i ∈ ℂ ∧ i # 0) ∧ (4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ)) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4)))) | |
22 | 16, 17, 21 | mpanl12 427 | . . . . . . 7 ⊢ ((4 ∈ ℤ ∧ (⌊‘(𝐾 / 4)) ∈ ℤ) → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4)))) |
23 | 2, 13, 22 | sylancr 405 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = ((i↑4)↑(⌊‘(𝐾 / 4)))) |
24 | i4 9674 | . . . . . . . 8 ⊢ (i↑4) = 1 | |
25 | 24 | oveq1i 5553 | . . . . . . 7 ⊢ ((i↑4)↑(⌊‘(𝐾 / 4))) = (1↑(⌊‘(𝐾 / 4))) |
26 | 1exp 9602 | . . . . . . . 8 ⊢ ((⌊‘(𝐾 / 4)) ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1) | |
27 | 13, 26 | syl 14 | . . . . . . 7 ⊢ (𝐾 ∈ ℤ → (1↑(⌊‘(𝐾 / 4))) = 1) |
28 | 25, 27 | syl5eq 2126 | . . . . . 6 ⊢ (𝐾 ∈ ℤ → ((i↑4)↑(⌊‘(𝐾 / 4))) = 1) |
29 | 23, 28 | eqtrd 2114 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (i↑(4 · (⌊‘(𝐾 / 4)))) = 1) |
30 | 29 | oveq2d 5559 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = ((i↑𝐾) / 1)) |
31 | expclzap 9598 | . . . . . 6 ⊢ ((i ∈ ℂ ∧ i # 0 ∧ 𝐾 ∈ ℤ) → (i↑𝐾) ∈ ℂ) | |
32 | 16, 17, 31 | mp3an12 1259 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (i↑𝐾) ∈ ℂ) |
33 | 32 | div1d 7935 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((i↑𝐾) / 1) = (i↑𝐾)) |
34 | 30, 33 | eqtrd 2114 | . . 3 ⊢ (𝐾 ∈ ℤ → ((i↑𝐾) / (i↑(4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾)) |
35 | 20, 34 | eqtrd 2114 | . 2 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 − (4 · (⌊‘(𝐾 / 4))))) = (i↑𝐾)) |
36 | 9, 35 | eqtrd 2114 | 1 ⊢ (𝐾 ∈ ℤ → (i↑(𝐾 mod 4)) = (i↑𝐾)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 ∈ wcel 1434 class class class wbr 3793 ‘cfv 4932 (class class class)co 5543 ℂcc 7041 0cc0 7043 1c1 7044 ici 7045 · cmul 7048 < clt 7215 − cmin 7346 # cap 7748 / cdiv 7827 ℕcn 8106 4c4 8158 ℤcz 8432 ℚcq 8785 ⌊cfl 9350 mod cmo 9404 ↑cexp 9572 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-coll 3901 ax-sep 3904 ax-nul 3912 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 ax-iinf 4337 ax-cnex 7129 ax-resscn 7130 ax-1cn 7131 ax-1re 7132 ax-icn 7133 ax-addcl 7134 ax-addrcl 7135 ax-mulcl 7136 ax-mulrcl 7137 ax-addcom 7138 ax-mulcom 7139 ax-addass 7140 ax-mulass 7141 ax-distr 7142 ax-i2m1 7143 ax-0lt1 7144 ax-1rid 7145 ax-0id 7146 ax-rnegex 7147 ax-precex 7148 ax-cnre 7149 ax-pre-ltirr 7150 ax-pre-ltwlin 7151 ax-pre-lttrn 7152 ax-pre-apti 7153 ax-pre-ltadd 7154 ax-pre-mulgt0 7155 ax-pre-mulext 7156 ax-arch 7157 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-reu 2356 df-rmo 2357 df-rab 2358 df-v 2604 df-sbc 2817 df-csb 2910 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-nul 3259 df-if 3360 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-int 3645 df-iun 3688 df-br 3794 df-opab 3848 df-mpt 3849 df-tr 3884 df-id 4056 df-po 4059 df-iso 4060 df-iord 4129 df-on 4131 df-ilim 4132 df-suc 4134 df-iom 4340 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-rn 4382 df-res 4383 df-ima 4384 df-iota 4897 df-fun 4934 df-fn 4935 df-f 4936 df-f1 4937 df-fo 4938 df-f1o 4939 df-fv 4940 df-riota 5499 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-1st 5798 df-2nd 5799 df-recs 5954 df-frec 6040 df-pnf 7217 df-mnf 7218 df-xr 7219 df-ltxr 7220 df-le 7221 df-sub 7348 df-neg 7349 df-reap 7742 df-ap 7749 df-div 7828 df-inn 8107 df-2 8165 df-3 8166 df-4 8167 df-n0 8356 df-z 8433 df-uz 8701 df-q 8786 df-rp 8816 df-fl 9352 df-mod 9405 df-iseq 9522 df-iexp 9573 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |