![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifeq1 | GIF version |
Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
ifeq1 | ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 2602 | . . 3 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) | |
2 | 1 | uneq1d 3135 | . 2 ⊢ (𝐴 = 𝐵 → ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑}) = ({𝑥 ∈ 𝐵 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑})) |
3 | dfif6 3370 | . 2 ⊢ if(𝜑, 𝐴, 𝐶) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑}) | |
4 | dfif6 3370 | . 2 ⊢ if(𝜑, 𝐵, 𝐶) = ({𝑥 ∈ 𝐵 ∣ 𝜑} ∪ {𝑥 ∈ 𝐶 ∣ ¬ 𝜑}) | |
5 | 2, 3, 4 | 3eqtr4g 2140 | 1 ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐴, 𝐶) = if(𝜑, 𝐵, 𝐶)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1285 {crab 2357 ∪ cun 2980 ifcif 3368 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-rab 2362 df-v 2612 df-un 2986 df-if 3369 |
This theorem is referenced by: ifeq12 3382 ifeq1d 3383 ifbieq12i 3391 |
Copyright terms: Public domain | W3C validator |