Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iftruei GIF version

Theorem iftruei 3374
 Description: Inference associated with iftrue 3373. (Contributed by BJ, 7-Oct-2018.)
Hypothesis
Ref Expression
iftruei.1 𝜑
Assertion
Ref Expression
iftruei if(𝜑, 𝐴, 𝐵) = 𝐴

Proof of Theorem iftruei
StepHypRef Expression
1 iftruei.1 . 2 𝜑
2 iftrue 3373 . 2 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
31, 2ax-mp 7 1 if(𝜑, 𝐴, 𝐵) = 𝐴
 Colors of variables: wff set class Syntax hints:   = wceq 1285  ifcif 3368 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-if 3369 This theorem is referenced by:  xnegpnf  9041  xnegmnf  9042  exp0  9647  lcm0val  10672
 Copyright terms: Public domain W3C validator