Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinxsng GIF version

Theorem iinxsng 3759
 Description: A singleton index picks out an instance of an indexed intersection's argument. (Contributed by NM, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Hypothesis
Ref Expression
iinxsng.1 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iinxsng (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem iinxsng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iin 3689 . 2 𝑥 ∈ {𝐴}𝐵 = {𝑦 ∣ ∀𝑥 ∈ {𝐴}𝑦𝐵}
2 iinxsng.1 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
32eleq2d 2149 . . . 4 (𝑥 = 𝐴 → (𝑦𝐵𝑦𝐶))
43ralsng 3441 . . 3 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝑦𝐵𝑦𝐶))
54abbi1dv 2199 . 2 (𝐴𝑉 → {𝑦 ∣ ∀𝑥 ∈ {𝐴}𝑦𝐵} = 𝐶)
61, 5syl5eq 2126 1 (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1285   ∈ wcel 1434  {cab 2068  ∀wral 2349  {csn 3406  ∩ ciin 3687 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-v 2604  df-sbc 2817  df-sn 3412  df-iin 3689 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator