![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imaeq2 | GIF version |
Description: Equality theorem for image. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
imaeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseq2 4629 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐶 ↾ 𝐴) = (𝐶 ↾ 𝐵)) | |
2 | 1 | rneqd 4585 | . 2 ⊢ (𝐴 = 𝐵 → ran (𝐶 ↾ 𝐴) = ran (𝐶 ↾ 𝐵)) |
3 | df-ima 4378 | . 2 ⊢ (𝐶 “ 𝐴) = ran (𝐶 ↾ 𝐴) | |
4 | df-ima 4378 | . 2 ⊢ (𝐶 “ 𝐵) = ran (𝐶 ↾ 𝐵) | |
5 | 2, 3, 4 | 3eqtr4g 2139 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 “ 𝐴) = (𝐶 “ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ran crn 4366 ↾ cres 4367 “ cima 4368 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-sn 3406 df-pr 3407 df-op 3409 df-br 3788 df-opab 3842 df-xp 4371 df-cnv 4373 df-dm 4375 df-rn 4376 df-res 4377 df-ima 4378 |
This theorem is referenced by: imaeq2i 4690 imaeq2d 4692 ssimaex 5260 ssimaexg 5261 isoselem 5484 f1opw2 5731 fopwdom 6370 |
Copyright terms: Public domain | W3C validator |